設(shè)P為雙曲線的漸近線在第一象限內(nèi)的部分上一動(dòng)點(diǎn),F(xiàn)為雙曲線C的右焦點(diǎn),A為雙曲線C的右準(zhǔn)線與x軸的交點(diǎn),e是雙曲線C的離心率,則∠APF的余弦的最小值為( )
A.
B.
C.
D.
【答案】分析:根據(jù)雙曲線的簡(jiǎn)單性質(zhì)得:A( ,0),F(xiàn)(c,0),P(at,bt) 由直線的斜率公式,得KPF=,KPA=,再利用根據(jù)到角公式,得tan∠APF的表達(dá)式,最后利用基本不等式求得tan∠APF的最大值,從而得出∠APF的余弦的最小值.
解答:解:由題意得:A( ,0),F(xiàn)(c,0),P(at,bt)
由直線的斜率公式,得
KPF=,KPA=
根據(jù)到角公式,得
tan∠APF=
化簡(jiǎn),得tan∠APF===
此時(shí) =

則∠APF的余弦的最小值
故選B.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).涉及了雙曲線方程中a,b和c的關(guān)系,漸近線問(wèn)題,離心率問(wèn)題等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)在直角坐標(biāo)系xoy中,雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦距為10,一條漸近線的傾斜角為arctan
3
4

(1)求雙曲線方程及漸近線的方程;
(2)設(shè)P為雙曲線的右頂點(diǎn),過(guò)P作一條漸近線的平行線交另一條漸近線于M點(diǎn),求△OPM的面積S;
(3)當(dāng)P在雙曲線上運(yùn)動(dòng)時(shí),試研究△OPM的面積的變化情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線在第一象限內(nèi)的部分上一動(dòng)點(diǎn),F(xiàn)為雙曲線C的右焦點(diǎn),A為雙曲線C的右準(zhǔn)線與x軸的交點(diǎn),e是雙曲線C的離心率,則∠APF的最大值為( 。
A、arcsin
1
e
B、arccos
1
e
C、arctan
1
e2-1
D、arccot
e2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線在第一象限內(nèi)的部分上一動(dòng)點(diǎn),F(xiàn)為雙曲線C的右焦點(diǎn),A為雙曲線C的右準(zhǔn)線與x軸的焦點(diǎn),若∠APF的最大值為
π
3
,則雙曲線的離心率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開(kāi)中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)P為雙曲線的漸近線在第一象限內(nèi)的部分上一動(dòng)點(diǎn),F(xiàn)為雙曲線C的右焦點(diǎn),A為雙曲線C的右準(zhǔn)線與x軸的交點(diǎn),e是雙曲線C的離心率,則∠APF的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案