【題目】已知函數(shù)f(x)=﹣x3+ax2+1,(a∈R).
(1)若f(x)圖象上橫坐標為1的點處存在垂直于y軸的切線,求a的值;
(2)若f(x)在區(qū)間(﹣1,2)內(nèi)有兩個不同的極值點,求a取值范圍;
(3)當a=1時,是否存在實數(shù)m,使得函數(shù)g(x)=x4﹣5x3+(2﹣m)x2+1的圖象于函數(shù)f(x)的圖象恰有三個不同的交點,若存在,試求出實數(shù)m的值;若不存在,說明理由.

【答案】
(1)解:依題意,f′(1)=0

∵f′(x)=﹣3x2+2ax

﹣3(1)2+2a1=0,

∴a=


(2)解:若f(x)在區(qū)間(﹣1,2)內(nèi)有兩個不同的極值點,

則方程f′(x)=﹣3x2+2ax=0在區(qū)間(﹣1,2)內(nèi)有兩個不同的實根,

∴△>0,f′(﹣1)<0,f′(2)<0,﹣1< <2,

解得:﹣ <a<3且a≠0

但a=0時,f(x)=﹣x3+1無極值點,

∴a的取值范圍為(﹣ ,0)∪(0,3)


(3)解:a=1時,f(x)=﹣x3+x2+1,

要使函數(shù)f(x)與g(x)=x4﹣5x3+(2﹣m)x2+1的圖象恰有三個交點,

等價于方程﹣x3+x2+1=x4﹣5x3+(2﹣m)x2+1,

即方程x2(x2﹣4x+1﹣m)=0恰有三個不同的實根.

∵x=0是一個根,

∴應使方程x2﹣4x+1﹣m=0有兩個非零的不等實根,

由△=16﹣4(1﹣m)>0,1﹣m≠0,解得m>﹣3,m≠1,

∴存在m∈(﹣3,1)∪(1,+∞),

使用函數(shù)f(x)與g(x)=x4﹣5x3+(2﹣m)x2+1的圖象恰有三個交點


【解析】(1)先求出函數(shù)的導數(shù),再由f′(1)=0求解a.(2)將“f(x)在區(qū)間(﹣1,2)內(nèi)有兩個不同的極值點”轉化為“方程f′(x)=0在區(qū)間(﹣1,2)內(nèi)有兩個不同的實根”,用△>0求解.(3)a=1,“要使函數(shù)f(x)與g(x)=x4﹣5x3+(2﹣m)x2+1的圖象恰有三個交點”即為“方程x2(x2﹣4x+1m)=0恰有三個不同的實根”.因為x=0是一個根,所以方程x2﹣4x+1﹣m=0應有兩個非零的不等實根,再用判別式求解.
【考點精析】利用函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:
①集合A={x∈Z|x=2k﹣1,k∈Z}與集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
③函數(shù)y= 的單調減區(qū)間是(﹣∞,0)∪(0,+∞);
④不存在實數(shù)m,使f(x)=x2+mx+1為奇函數(shù);
⑤若f(x+y)=f(x)f(y),且f(1)=2,則 + +…+ =2016.
其中正確說法的序號是(
A.①②③
B.②③④
C.①③⑤
D.①④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求證: (a≥3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖為某市2017年2月28天的日空氣質量指數(shù)折線圖.

由中國空氣質量在線監(jiān)測分析平臺提供的空氣質量指數(shù)標準如下:

(1)請根據(jù)所給的折線圖補全下方的頻率分布直方圖(并用鉛筆涂黑矩形區(qū)域),并估算該市2月份空氣質量指數(shù)監(jiān)測數(shù)據(jù)的平均數(shù)(保留小數(shù)點后一位);

(2)研究人員發(fā)現(xiàn),空氣質量指數(shù)測評中與燃燒排放的兩個項目存在線性相關關系,以為單位,下表給出的相關數(shù)據(jù):

關于的回歸方程,并估計當排放量是時, 的值.

(用最小二乘法求回歸方程的系數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列表示錯誤的是(
A.0??
B.??{1,2}
C.{(x,y)| ={3,4}
D.若A?B,則A∩B=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)滿足f(x+2)=f(x﹣2),當x∈(0,1)時,f(x)=3x , 則f( )=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的焦點為,過點的直線兩點,交軸于點軸的距離比.

(Ⅰ)求的方程;

(Ⅱ)若,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對于任意x∈R,都有f(x﹣2)≤f(x),則實數(shù)a的取值范圍是(
A.[﹣ , ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

同步練習冊答案