【題目】已知數(shù)列 的首項(xiàng) ,前n項(xiàng)和為 ,且 .
(1)證明數(shù)列 是等比數(shù)列;
(2)令 ,求函數(shù) 在點(diǎn)x=1處的導(dǎo)數(shù) ,并比較 與 的大小.
【答案】
(1)證明:由已知 ,
∴ 時(shí), ,
①②兩式相減,得
,
即 ,
從而 .
當(dāng)n=1 時(shí), ,
∴ .
又 ,故 ,
從而 .
故總有 .
又∵ ,∴ ,從而 ,
即 是以 為首項(xiàng),2為公比的等比數(shù)列.
(2)證明:由(1)可知 .
∵ ,
∴ .
從而
.
則
. (*)
當(dāng)n=1時(shí),(*)式=0,
∴ ;
當(dāng)n=2 時(shí),(*)式=-12<0,
∴ ;
當(dāng) 時(shí), ,
又 ,
∴ ,
即(*)式>0,從而 .
【解析】本題主要考查了比較法證明不等式,解決問題的關(guān)鍵是根據(jù)在比較大小時(shí),作差法的差式與“n”的取值有關(guān),且大小關(guān)系隨“n”的變化而變化. 此類比較大小的題是典型的結(jié)論不唯一的題.在數(shù)列中,大小問題可能會(huì)隨“n”變化而變化.往往n=1,2,…,前幾個(gè)自然數(shù)對應(yīng)的值與后面 的值大小不一樣,這就要求在解答這樣的題時(shí),要時(shí)刻有“大小關(guān)系不一定唯一”的念頭,即時(shí)刻提醒自己所求解的問題是否需要討論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镽,導(dǎo)函數(shù)f'(x)的圖象如圖所示,則函數(shù)f(x)( )
A.無極大值點(diǎn),有四個(gè)極小值點(diǎn)
B.有三個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
C.有兩個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
D.有四個(gè)極大值點(diǎn),無極小值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求證:AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定圓M: =16,動(dòng)圓N過點(diǎn)F 且與圓M相切,記圓心N的軌跡為E.
(I)求軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)A,B,C在E上運(yùn)動(dòng),A與B關(guān)于原點(diǎn)對稱,且|AC|=|CB|,當(dāng)△ABC的面積最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)坐標(biāo)為(2,0),離心率為 .
(1)求這個(gè)橢圓的方程;
(2)若這個(gè)橢圓左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 過F1且斜率為1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是 ,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的值域?yàn)镽,則常數(shù)a的取值范圍是( )
A.(﹣1,1]∪[2,3)
B.(﹣∞,1]∪[2,+∞)
C.(﹣1,1)∪[2,3)
D.(﹣∞,0]{1}∪[2,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com