【題目】如圖,三棱柱中ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D為棱AC的中點(diǎn),側(cè)面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.

(1)證明:AC1⊥平面A1BC;
(2)求三棱錐B﹣A1B1C的體積.

【答案】
(1)證明:∵A1D⊥平面ABC,1D平面A1ACC1,

∴平面1ACC1⊥平面ABC,∵平面A1ACC1∩平面ABC=AC,CA⊥CB,CB平面ABC,

∴BC⊥平面A1ACC1,∵AC1平面A1ACC1

∴BC⊥AC1,

∵側(cè)面A1ACC1為菱形,∴A1C⊥AC1,

又∵A1C平面A1BC,BC平面A1BC,A1C∩BC=C,

∴AC1⊥平面A1BC,


(2)解:∵AD=1,A1A=2,∴A1D=

=SABCA1D= =

= = SABCA1D= ,

= =


【解析】(1)由A1D⊥平面ABC得平面1ACC1⊥平面ABC,于是BC⊥平面A1ACC1 , 推出BC⊥AC1 , 由菱形的性質(zhì)可知A1C⊥AC1 , 于是AC1⊥平面A1BC.(2)三棱錐B﹣A1B1C的體積等于三棱柱的體積減去兩個(gè)棱錐的體積.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的判定,需要了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當(dāng)時(shí),解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機(jī)抽測(cè)了20位同學(xué),得到如下數(shù)據(jù):

序號(hào)

1

2

3

4

5

6

7

8

9

10

身高(厘米)

192

164

172

177

176

159

171

166

182

166

腳長(碼)

48

38

40

43

44

37

40

39

46

39

序號(hào)

11

12

13

14

15

16

17

18

19

20

身高(厘米)

169

178

167

174

168

179

165

170

162

170

腳長(碼)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)請(qǐng)根據(jù)“序號(hào)為5的倍數(shù)”的幾組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅱ)若“身高大于175厘米”的為“高個(gè)”,“身高小于等于175厘米”的為“非高個(gè)”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請(qǐng)根據(jù)上表數(shù)據(jù)完成列聯(lián)表,并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的把握認(rèn)為腳的大小與身高之間有關(guān)系.

附表及公式:,.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

列聯(lián)表:

高個(gè)

非高個(gè)

總計(jì)

大腳

非大腳

總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB= ,將△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,則三棱錐P﹣BCD的外接球體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的判斷正確的是( )

的解集是;②當(dāng)時(shí)有極小值,當(dāng)時(shí)有極大值;

沒有最小值,也沒有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;

②對(duì)于相關(guān)系數(shù)越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越。

③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點(diǎn)

是用來判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對(duì)于兩個(gè)分類變量適合;

以上幾種說法正確的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且(2b﹣a)cosC=ccosA.
(1)求角C的大。
(2)若sinA+sinB=2 sinAsinB,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案