(2013•成都模擬)已知正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)相等,體積為12
3
 cm3
.其三視圖中的俯視圖如圖所示,則其左視圖的面積是(  )
分析:由已知可求出正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2cm,故左視圖是長(zhǎng)方形,長(zhǎng)為2
3
,寬為2,由此能求出左視圖的面積.
解答:解:設(shè)正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為a,
則體積V=Sh=6×
3
4
a2×a
=12
3
 cm3
,解得a=2,
故左視圖是長(zhǎng)方形,長(zhǎng)為2
3
,寬為2,
面積為2
3
×2=4
3
 cm2

故選A
點(diǎn)評(píng):本題考查三視圖與直觀圖的關(guān)系,正確判斷幾何體的形狀是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足:①f(x)在[m,n]上是單調(diào)函數(shù);②f(x)在[m,n]上的值域?yàn)閇2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有
①③④
①③④
(填上所有正確的序號(hào))
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)某大學(xué)對(duì)1000名學(xué)生的自主招生水平測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),得到樣本頻率分布直方圖(如圖),則這1000名學(xué)生在該次自主招生水平測(cè)試中不低于70分的學(xué)生數(shù)是
600
600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足acosC+
1
2
c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)若實(shí)數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)設(shè)函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,則實(shí)數(shù)α為
-4或2
-4或2

查看答案和解析>>

同步練習(xí)冊(cè)答案