【題目】某省的一個氣象站觀測點在連續(xù)4天里記錄的指數(shù)與當(dāng)天的空氣水平可見度(單位: )的情況如表1:
該省某市2016年11月指數(shù)頻數(shù)分布如表2:
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設(shè),根據(jù)表1的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(附參考公式: ,其中, )
(2)小李在該市開了一家洗車店,經(jīng)統(tǒng)計,洗車店平均每天的收入與指數(shù)由相關(guān)關(guān)系,如表3:
日均收入(元) |
根據(jù)表3估計小李的洗車店該月份平均每天的收入.
【答案】(1) (2)2400元
【解析】試題分析:首先根據(jù)表格數(shù)據(jù)計算,再計算, ,求出回歸直線方程;再根據(jù)表3可知,該月30天中有3天每天虧損約2000元,有6天每天虧損約1000元,有12天每天收入約2000元,有6天每天收入約6000元,有3天每天收入約8000元,計算出該月份平均每天的收入.
試題解析:
(1), ,
,
,
∴, ,
所以關(guān)于的線性回歸方程為.
(2)根據(jù)表3可知,該月30天中有3天每天虧損約2000元,有6天每天虧損約1000元,有12天每天收入約2000元,有6天每天收入約6000元,有3天每天收入約8000元,估計小李的洗車店該月份平均每天的收入約為元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=8﹣f(4+x),函數(shù)g(x)= ,若函數(shù)f(x)與g(x)的圖象共有168個交點,記作Pi(xi , yi)(i=1,2,…,168),則(x1+y1)+(x2+y2)+…+(x168+y168)的值為( )
A.2018
B.2017
C.2016
D.1008
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘇州市一木地板廠生產(chǎn)A、B、C三類木地板,每類木地板均有環(huán)保型和普通兩種型號,某月的產(chǎn)量如下表(單位:片):
類型 | 木地板A | 木地板B | 木地板C |
環(huán)保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分層抽樣的方法在這個月生產(chǎn)的木地板中抽取50片,其中A類木地板10片.
(1)求Z的值;
(2)用隨機抽樣的方法從B類環(huán)保木地板抽取8片,作為一個樣本,經(jīng)檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘇州市一木地板廠生產(chǎn)A、B、C三類木地板,每類木地板均有環(huán)保型和普通兩種型號,某月的產(chǎn)量如下表(單位:片):
類型 | 木地板A | 木地板B | 木地板C |
環(huán)保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分層抽樣的方法在這個月生產(chǎn)的木地板中抽取50片,其中A類木地板10片.
(1)求Z的值;
(2)用隨機抽樣的方法從B類環(huán)保木地板抽取8片,作為一個樣本,經(jīng)檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x2﹣9x+2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[﹣2,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐中,底面為菱形,且,是邊長為的正三角形,且平面平面,已知點是的中點.
(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com