(本小題滿分13分)已知點分別為橢圓的左、右焦點,點為橢圓上任意一點,到焦點的距離的最大值為.
(1)求橢圓的方程。
(2)點的坐標為,過點且斜率為的直線與橢圓相交于兩點。對于任意的是否為定值?若是求出這個定值;若不是說明理由。

(1) (2)定值為

解析試題分析:(1)由題意可知:a+c= +1 ,c=1
∴a=, ∴所求橢圓的方程為: 
(2)設直線l的方程為:y=k(x-1)A(x1,y1) ,B(x2,y2),M(,0)聯(lián)立 
 
,





為定值
考點:橢圓方程性質及直線與橢圓的位置關系
點評:直線與橢圓相交,常用到韋達定理使計算簡化,圓錐曲線中的向量運算常轉化為點的坐標運算,本題有一定難度

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,是半圓的直徑,是半圓(除端點)上的任意一點.在線段的延長線上取點,使,試求動點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,=(3,-1)共線.
(1)求橢圓的離心率;
(2)設M為橢圓上任意一點,且),證明為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點為右焦點為,短軸兩個端點為.與軸不垂直的直線與橢圓C交于不同的兩點,記直線、的斜率分別為、,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點,并求出定點坐標.
(3)當弦 的中點落在內(包括邊界)時,求直線的斜率的取值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點(2,1),平行于直線軸上的截距為,設直線交橢圓于兩個不同點、

(1)求橢圓方程;
(2)求證:對任意的的允許值,的內心在定直線。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點
(I)求橢圓的方程;
(II)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設分別是圓和橢圓的弦,且弦的端點在軸的異側,端點、的橫坐標分別相等,縱坐標分別同號.

(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線于點,以為直徑的圓記為.
①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

同步練習冊答案