【題目】已知函數(shù).

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

3)若正實(shí)數(shù)滿足,證明:.

【答案】(1)單調(diào)遞減區(qū)間為(2)3)證明見解析

【解析】

(1)求出函數(shù)的定義域與導(dǎo)數(shù),通過導(dǎo)數(shù)的符號(hào)求函數(shù)的單調(diào)區(qū)間;(2)問題轉(zhuǎn)化為恒成立,先求,然后分別討論當(dāng)時(shí)函數(shù)的單調(diào)性,根據(jù)單調(diào)性求的最大值,若最大值小于零,則不等式恒成立,否則不恒成立,由此確定整數(shù)的最小值;(3) 由題意得,即,因?yàn)?/span>均為正實(shí)數(shù),令,分析確定其最小值,也就是的最小值,所以解不等式可以確定,命題得證.

解:(1定義域?yàn)?/span>

,即,解得

單調(diào)遞減區(qū)間為.

2)設(shè)

不等式恒成立等價(jià)于恒成立,

當(dāng)時(shí),,,

所以,上單調(diào)遞增,

因?yàn)?/span>,不符合題意;

當(dāng)時(shí),

+

0

-

單調(diào)遞增

極大值

單調(diào)遞減

設(shè)單調(diào)遞減且

所以當(dāng)時(shí),

所以整數(shù)的最小值為2;

(3)由題意得

,

,則

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以,

所以,令,

,解得成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面 , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的首項(xiàng),數(shù)列項(xiàng)和記為,前項(xiàng)積記為.

(1) ,求等比數(shù)列的公比

(2) (1)的條件下,判斷的大小;并求為何值時(shí),取得最大值;

(3) (1)的條件下,證明:若數(shù)列中的任意相鄰三項(xiàng)按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為,則數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,,點(diǎn)OAD的中點(diǎn),.

1)求證:平面PAD;

2)若,求平面PBC與平面PAD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加油站擬建造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長度單位為米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.

(1) 寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;

(2) 若預(yù)算為萬元,求所能建造的儲(chǔ)油罐中的最大值(精確到),并求此時(shí)儲(chǔ)油罐的體積(單位: 立方米,精確到立方米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為,,且各人回答正確與否相互之間沒有影響,用表示乙隊(duì)的總得分.

(Ⅰ)求的分布列及數(shù)學(xué)期望;

(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)=log4(4x+1)+kx是偶函數(shù).

(1)求k的值;

(2)判斷函數(shù)y=fx)-xR上的單調(diào)性,并加以證明;

(3)設(shè)gx)=log4a2x-a),若函數(shù)fx)與gx)的圖象有且僅有一個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

從數(shù)列中取出部分項(xiàng),并將它們按原來的順序組成一個(gè)數(shù)列,稱之為數(shù)列的一個(gè)子數(shù)列.

設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無窮等差數(shù)列.

1)若,成等比數(shù)列,求其公比

2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問該數(shù)列是否為的無窮等比子數(shù)列,請(qǐng)說明理由.

3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無窮等比子數(shù)列,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案