(北京卷理17)甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;

(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.

【標(biāo)準(zhǔn)答案】:

解:(Ⅰ)記甲、乙兩人同時參加崗位服務(wù)為事件,那么,

即甲、乙兩人同時參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務(wù)為事件,那么

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),

所以,的分布列是

1

3

【高考考點(diǎn)】: 概率,隨機(jī)變量的分布列

【易錯提醒】: 總的可能性是典型的“捆綁排列”,易把C混淆為A

【備考提示】: 近幾年新增的內(nèi)容,整體難度不大,可以作為高考基本得分點(diǎn)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(北京卷理17)甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;

(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.

查看答案和解析>>

同步練習(xí)冊答案