【題目】卵形線(xiàn)是常見(jiàn)曲線(xiàn)的一種,分笛卡爾卵形線(xiàn)和卡西尼卵形線(xiàn),卡西尼卵形線(xiàn)是平面內(nèi)與兩個(gè)定點(diǎn)(叫焦點(diǎn))的距離之積等于常數(shù)的點(diǎn)的軌跡.某同學(xué)類(lèi)比橢圓與雙曲線(xiàn)對(duì)卡西尼卵形線(xiàn)進(jìn)行了相關(guān)性質(zhì)的探究,設(shè)F1(﹣c,0),F2(c,0)是平面內(nèi)的兩個(gè)定點(diǎn),|PF1||PF2|=a2(a是常數(shù)).得出卡西尼卵形線(xiàn)的相關(guān)結(jié)論:①該曲線(xiàn)既是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形;②若a=c,則曲線(xiàn)過(guò)原點(diǎn);③若0<a<c,其軌跡為線(xiàn)段.其中正確命題的序號(hào)是_____.
【答案】①②
【解析】
設(shè),得到 ,得到,再對(duì)三個(gè)選項(xiàng)加以驗(yàn)證,即可求解,得到答案.
由題意設(shè)P(x,y),則,
即[(x+c)2+y2][(x﹣c)2+y2]=a4,
對(duì)于①中,因?yàn)榘逊匠讨械?/span>x被﹣x代換,方程不變,故此曲線(xiàn)關(guān)于y軸對(duì)稱(chēng);
把方程中的y被﹣y 代換,方程不變,故此曲線(xiàn)關(guān)于x軸對(duì)稱(chēng);
把方程中的x被﹣x代換,y被﹣y 代換,方程不變,
故此曲線(xiàn)是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形,所以是正確的.
對(duì)于②中,若a=c,(0,0)代入,方程成立則曲線(xiàn)過(guò)原點(diǎn),所以是正確的;
對(duì)于③中,因?yàn)椋?/span>|PF1|+|PF2|)min=2c,(當(dāng)且僅當(dāng),|PF1|=|PF2|=c時(shí)取等號(hào)),
所以(|PF1||PF2|)min=c2,所以若0<a<c,則曲線(xiàn)不存在,所以不正確.
故答案為:①②
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直線(xiàn)坐標(biāo)系中,定義為兩點(diǎn)的“切比雪夫距離”,又設(shè)點(diǎn)P及上任意一點(diǎn)Q,稱(chēng)的最小值為點(diǎn)P到直線(xiàn)的“切比雪夫距離”記作給出下列四個(gè)命題:( )
①對(duì)任意三點(diǎn)A、B、C,都有
②已知點(diǎn)P(3,1)和直線(xiàn)則
③到定點(diǎn)M的距離和到M的“切比雪夫距離”相等點(diǎn)的軌跡是正方形;
④定點(diǎn)動(dòng)點(diǎn)滿(mǎn)足則點(diǎn)P的軌跡與直線(xiàn)(為常數(shù))有且僅有2個(gè)公共點(diǎn)。
其中真命題的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)的直線(xiàn)交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線(xiàn)段的中點(diǎn).過(guò)點(diǎn)作軸的垂線(xiàn)交于另一點(diǎn),延長(zhǎng)交于點(diǎn).
(ⅰ)設(shè)直線(xiàn)的斜率分別為,證明為定值;
(ⅱ)求直線(xiàn)的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)下列說(shuō)法正確的是( )
A.橢圓1上任意一點(diǎn)(非左右頂點(diǎn))與左右頂點(diǎn)連線(xiàn)的斜率乘積為
B.過(guò)雙曲線(xiàn)1焦點(diǎn)的弦中最短弦長(zhǎng)為
C.拋物線(xiàn)y2=2px上兩點(diǎn)A(x1,y1).B(x2,y2),則弦AB經(jīng)過(guò)拋物線(xiàn)焦點(diǎn)的充要條件為x1x2
D.若直線(xiàn)與圓錐曲線(xiàn)有一個(gè)公共點(diǎn),則該直線(xiàn)和圓錐曲線(xiàn)相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)的極坐標(biāo)方程為 ,直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),直線(xiàn)過(guò)定點(diǎn)且傾斜角為交曲線(xiàn)于兩點(diǎn).
(1)把曲線(xiàn)化成直角坐標(biāo)方程,并求的值;
(2)若成等比數(shù)列,求直線(xiàn)的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿(mǎn)意度,從在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿(mǎn)分均為60分.
整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:
定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿(mǎn)意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿(mǎn)意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果你留心使會(huì)發(fā)現(xiàn),汽車(chē)前燈后的反射鏡呈拋物線(xiàn)的形狀,把拋物線(xiàn)沿它的對(duì)稱(chēng)軸旋轉(zhuǎn)一周,就會(huì)形成一個(gè)拋物面.這種拋物面形狀,正是我們熟悉的汽車(chē)前燈的反射鏡形狀,這種形狀使車(chē)燈既能夠發(fā)出明亮的、照射很遠(yuǎn)的平行光束,又能發(fā)出較暗的,照射近距離的光線(xiàn).我們都知道常規(guī)的前照燈主要是由燈泡、反射鏡和透鏡三部分組成,明亮的光束,是由位于拋物面形狀反射鏡焦點(diǎn)的光源射出的,燈泡位于拋物面的焦點(diǎn)上,燈泡發(fā)出的光經(jīng)拋物面反射鏡反射形成平行光束,再經(jīng)過(guò)配光鏡的散射、偏轉(zhuǎn)作用,以達(dá)到照亮路面的效果,這樣的燈光我們通常稱(chēng)為遠(yuǎn)光燈:而較暗的光線(xiàn),不是由反射鏡焦點(diǎn)的光源射出的,光線(xiàn)的行進(jìn)與拋物線(xiàn)的對(duì)稱(chēng)軸不平行,光線(xiàn)只能向上和向下照射,所以照射距離并不遠(yuǎn),如果把向上射出的光線(xiàn)遮。(chē)燈就只能發(fā)出向下的、射的很近的光線(xiàn)了.請(qǐng)用數(shù)學(xué)的語(yǔ)言歸納表達(dá)遠(yuǎn)光燈的照明原理,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了選拔學(xué)生參加全市中學(xué)生物理競(jìng)賽,學(xué)校先從高三年級(jí)選取60名同學(xué)進(jìn)行競(jìng)賽預(yù)選賽,將參加預(yù)選賽的學(xué)生成績(jī)(單位:分)按范圍,,,分組,得到的頻率分布直方圖如圖:
(1)計(jì)算這次預(yù)選賽的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若對(duì)得分在前的學(xué)生進(jìn)行校內(nèi)獎(jiǎng)勵(lì),估計(jì)獲獎(jiǎng)分?jǐn)?shù)線(xiàn);
(3)若這60名學(xué)生中男女生比例為,成績(jī)不低于60分評(píng)估為“成績(jī)良好”,否則評(píng)估為“成績(jī)一般”,試完成下面列聯(lián)表,是否有的把握認(rèn)為“成績(jī)良好”與“性別”有關(guān)?
成績(jī)良好 | 成績(jī)一般 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:,
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求證;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com