(1)曲線C:y=ax3+bx2+cx+d在(0,1)點處的切線為l1:y=x+1在(3,4)點處的切線為l2:y=-2x+10,求曲線C的方程;
(2)求曲線S:y=2x-x3的過點A(1,1)的切線方程.
分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),根據(jù)y=f(x)在點(x1,f(x1))處的切線的斜率等于在該點的導(dǎo)數(shù)值可得答案;
(2)過這一點的切線和在這點的切線要區(qū)分開來,應(yīng)先設(shè)出切點坐標(biāo).
解答:解:(1)已知兩點均在曲線C上.∴
∵y′=3ax
2+2bx+cf′(0)=cf′(3)=27a+6b+c
∴
,可求出
d=1,c=1,a=-,b=1∴曲線C:
y=-x3+x2+x+1(2)設(shè)切點為P(x
0,2x
0-x
03),則斜率k=f′(x
0)=2-3x
02,
過切點的切線方程為:y-2x
0+x
03=(2-3x
02)(x-x
0)
∵過點A(1,1),
∴1-2x
0+x
03=(2-3x
02)(1-x
0)
解得:x
0=1或
x0=-,
當(dāng)x
0=1時,切點為(1,1),切線方程為:x+y-2=0
當(dāng)
x0=-時,切點為
(-,-),切線方程為:5x-4y-1=0
點評:本題是對導(dǎo)數(shù)幾何意義的深度考查.也是近兩年來高考在導(dǎo)數(shù)這部分的考查內(nèi)容.