“|x|<1”是“-3<x<1”成立的_____條件.


  1. A.
    既不充分也不必要
  2. B.
    充要
  3. C.
    必要不充分
  4. D.
    充分不必要
D
分析:解絕對不等式求出“|x|<1”的等價命題,并判斷兩個命題對應(yīng)集合的關(guān)系,利用集合法可判斷出兩個條件的充要關(guān)系.
解答:|x|<1=-1<x<1
∵(-1,1)?(-3,1)
故“|x|<1”是“-3<x<1”成立的充分不必要條件
故選D
點評:本題考查的知識點是必要條件、充分條件與充要條件的判斷,其中集合法“誰小誰充分,誰大誰必要”是解答充要條件判斷問題常 用的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲一模)給出以下命題:①?x∈R,sinx+cosx>1②?x∈R,x2-x+1>0③“x>1”是“|x|>1”的充分不必要條件,其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
(1)函數(shù)f(x)=1是偶函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2-8a<0且a>0;
(3)函數(shù)f(x)在(0,+∞)上是增函數(shù),在(-∞,0)上也是增函數(shù),所以函數(shù)f(x)在定義域上是增函數(shù);
(4)若x∈R且x≠0,則log2x2=2log2x. 
其中正確命題的序號是
(1)
(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)?x∈R,使得sinx+cosx>1;
(2)函數(shù)f(x)=
sinx
x
在區(qū)間(0,
π
2
)
上是單調(diào)減函數(shù);
(3)“x>1”是“|x|>1”的充分不必要條件;
(4)在△ABC中,“A>B”是“sinA>sinB”的必要不充分條件.
其中是真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x>1”是“x2-x>0”的
充分非必要
充分非必要
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-4,或x>1},若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案