已知函數(shù)f(x)=x2-2lnx+a(a為實(shí)常數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
12
,2]
上的最大值與最小值.
分析:(1)求出函數(shù)定義域,導(dǎo)數(shù)f′(x),在定義域內(nèi)解不等式f′(x)>0,f′(x)<0即可;
(2)列出當(dāng)x在[
1
2
,2]
上變化時(shí),f′(x),f(x)的變化情況表,則其唯一的極小值即為最小值,求出端點(diǎn)處函數(shù)值f(
1
2
),f(2),通過(guò)作差比較可得最大值;
解答:解:(1)函數(shù)f(x)的定義域?yàn)閧x|x>0},f′(x)=2x-
2
x

令f′(x)>0,有
x2-1>0
x>0
,解之得x>1,
令f′(x)<0,有
x2-1<0
x>0
,得0<x<1,
所以函數(shù)f(x)的單調(diào)減區(qū)間為(0,1),f(x)的單調(diào)增區(qū)間為(1,+∞).
(2)當(dāng)x在[
1
2
,2]
上變化時(shí),f'(x),f(x)的變化情況如下表:

由表知,函數(shù)f(x)min=1-a,
f(
1
2
)=(
1
2
)2-2ln
1
2
+a=
1
4
+2ln2+a
,f(2)=22-2ln2+a=4-2ln2+a,
f(
1
2
)-f(2)=(
1
4
+2ln2+a)-(4-2ln2+a)=4ln2-
15
4
<0

所以f(x)max=4-2ln2+a.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、閉區(qū)間上的函數(shù)的最值,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案