【題目】如圖所示,平面ABCD,四邊形AEFB為矩形,,,.
(1)求證:平面ADE;
(2)求平面CDF與平面AEFB所成銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)根據(jù),,從而證明平面平面ADE,從而平面ADE。(2)以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出點(diǎn)的空間坐標(biāo),根據(jù)向量法求解即可。
(1)∵四邊形ABEF為矩形
又平面ADE,AE平面ADE
平面ADE
又,
同理可得:平面ADE
又,BF,BC 平面BCF
∴平面平面ADE
又CF平面BCF
平面ADE
(2)如圖,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則
,,
,,
設(shè)是平面CDF的一個法向量,則
即
令,解得
又是平面AEFB的一個法向量,
∴平面CDF與平面AEFB所成銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會為了解高二年級600名學(xué)生課余時間參加中華傳統(tǒng)文化活動的情況(每名學(xué)生最多參加7場).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:
參加場數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
占調(diào)查人數(shù)的百分比 | 8% | 10% | 20% | 26% | 18% | m% | 4% | 2% |
則以下四個結(jié)論中正確的是( )
A.表中m的數(shù)值為10
B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學(xué)生約為108人
C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學(xué)生約為216人
D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn),且和直線相切,動圓圓心形成的軌跡是曲線,過點(diǎn)的直線與曲線交于兩個不同的點(diǎn).
(1)求曲線的方程;
(2)在曲線上是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為直角梯形,,,四邊形為矩形,平面平面,,,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn).
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨中央號召,學(xué)校以“我們都是追夢人”為主題舉行知識競賽,F(xiàn)有10道題,其中6道甲類題,4道乙類題,王同學(xué)從中任取3道題解答.
(Ⅰ)求王同學(xué)至少取到2道乙類題的概率;
(Ⅱ)如果王同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨(dú)立,已知王同學(xué)恰好選中2道甲類題,1道乙類題,用表示王同學(xué)答對題的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在直角梯形中,為的中點(diǎn),四邊形為正方形,將沿折起,使點(diǎn)到達(dá)點(diǎn),如圖(2),為的中點(diǎn),且,點(diǎn)為線段上的一點(diǎn).
(1)證明:;
(2)當(dāng)與夾角最小時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記.
(1)求方程的實數(shù)根;
(2)設(shè),,均為正整數(shù),且為最簡根式,若存在,使得可唯一表示為的形式,試求橢圓的焦點(diǎn)坐標(biāo);
(3)已知,是否存在,使得成立,若存在,試求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)B(0,-2)和橢圓M:.直線l:y=kx+1與橢圓M交于不同兩點(diǎn)P,Q.
(Ⅰ)求橢圓M的離心率;
(Ⅱ)若,求△PBQ的面積;
(Ⅲ)設(shè)直線PB與橢圓M的另一個交點(diǎn)為C,當(dāng)C為PB中點(diǎn)時,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com