分析:(I)由S
n+2n=2a
n,知S
n=2a
n-2n.當(dāng)n=1 時(shí),S
1=2a
1-2,則a
1=2,當(dāng)n≥2時(shí),S
n-1=2a
n-1-2(n-1),故a
n=2a
n-1+2,由此能夠求出數(shù)列{a
n}的通項(xiàng)公式a
n.
(II)由(I)可以求出
bn=lo(an+2)=n+1,
=
,利用錯(cuò)位相減法求出T
n,再根據(jù)數(shù)列的函數(shù)性質(zhì)證明證
Tn≥.
解答:解:(I)∵S
n=2a
n-2n,
當(dāng)n∈N
*時(shí),S
n=2a
n-2n,①
當(dāng)n=1時(shí),S
1=2a
1-2,則a
1=2,
則當(dāng)n≥2,n∈N
*時(shí),S
n-1=2a
n-1-2(n-1).②
①-②,得a
n=2a
n-2a
n-1-2,
即a
n=2a
n-1+2,
∴a
n+2=2(a
n-1+2)
∵c
n=a
n+2即c
n=2c
n-1,
∴
=2,
∴{c
n}是以a
1+2=4為首項(xiàng),以2為公比的等比數(shù)列.
(II)由(Ⅰ)得出a
n+2=4•2
n-1=2
n+1∴
bn=lo(an+2)=n+1,
∴
=
T
n=
++…+T
n=
++…++兩式相減
T
n=
+++…+-=
+-=
-T
n=
-,T
n+1-T
n=
>0,
∴T
n的最小值為T
1=
-=
∴
Tn≥.
點(diǎn)評(píng):本題考查等比數(shù)列的證明和數(shù)列求和,數(shù)列的函數(shù)性質(zhì),注意構(gòu)造法和錯(cuò)位相減法的合理運(yùn)用.