等比數(shù)列{an}中,a1=2,a4=16,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a1,a2分別是等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn
(3)在(1)(2)條件下,設(shè)cn=bn•an,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等比數(shù)列通項(xiàng)公式能求出q=2,由此求出an=2n
(2)由已知條件利用等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,由此能求出數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn
(3)由cn=bn•an=(n-1)•2n,利用錯(cuò)位相減法能求出數(shù)列{cn}的前n項(xiàng)和.
解答: 解:(1)∵等比數(shù)列{an}中,a1=2,a4=16,
∴2q3=16,解得q=2,
∴an=2n
(2)∵a1,a2分別是等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),
b3=b1+2d=2
b5=b1+4d=4
,
解得b1=0,d=1,
∴bn=n-1,Sn=
n(n-1)
2

(3)cn=bn•an=(n-1)•2n,
∴Tn=1•22+2•23+3•24+…+(n-1)•2n,①
2Tn=1•23+2•24+3•25+…+(n-1)•2n+1,②
①-②,得:-Tn=22+23+24+…+2n-(n-1)•2n+1
=
4(1-2n-1)
1-2
-(n-1)•2n+1
=-4-(n-2)•2n+1,
Tn=(n-2)•2n+1+4
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β為常數(shù).
(1)求α,β的值;
(2)證明數(shù)列{an}為等差數(shù)列;
(3)設(shè)bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2xcos2
φ
2
+cos2xsinφ-sin2x(0<φ<π)圖象的一條對(duì)稱軸為x=
π
3

(Ⅰ)求φ的值;
(Ⅱ)若存在x0∈[-
π
3
,
π
6
]使得|f(x0)-m|≤
1
2
成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)已知函數(shù)g(x)=|f(
ωx
2
-
12
)|+|cosωx|在區(qū)間[0,1]上恰有50次取到最大值,求正數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-lnx+
a-1
x
-1
,試討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
anan+1
+2an-1,(n∈N*)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(π+α)=2,求
(1)
sinα+2cosα
cosα-sinα

(2)
2sin2α+cos2α
sinαcosα-cos2α

(3)sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項(xiàng)式(
1
2
+2x)n的展開式中,若第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
16
-
y2
9
=1,橢圓的焦點(diǎn)恰好為雙曲線的兩個(gè)頂點(diǎn),橢圓與雙曲線的離心率互為倒數(shù),則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)過正六邊形的四個(gè)頂點(diǎn),焦點(diǎn)恰好是另外兩個(gè)頂點(diǎn),則雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案