【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)在圓上,且在第一象限,過作的切線交橢圓于兩點(diǎn),問: 的周長是否為定值?若是,求出定值;若不是,說明理由.
【答案】(1);(2)詳見解析
【解析】試題分析:(1)要求橢圓標(biāo)準(zhǔn)方程,就是要確定的值,題中焦點(diǎn)說明,點(diǎn)在橢圓上,把坐標(biāo)代入標(biāo)準(zhǔn)方程可得的一個(gè)方程,聯(lián)立后結(jié)合可解得;(2)定值問題,就是讓切線繞圓旋轉(zhuǎn),求出的周長,為此設(shè)直線的方程為(,由它與圓相切可得的關(guān)系, ,下面來求周長,設(shè),把直線方程與橢圓方程聯(lián)立方程組,消元后得一元二次方程,可得,由弦長公式得弦長,再求得(這也可由焦半徑公式可得),再求周長,可得定值.
試題解析:(1)由題意得
所以橢圓方程為
(2)由題意,設(shè)的方程為
與圓相切, ,即
由
設(shè),則
又
,同理
(定值)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),滿足|PA|=2|PB|的點(diǎn)的軌跡是圓M:x2+y2x+Ey+F=0.直線AB與圓M相交于C,D兩點(diǎn),,且點(diǎn)C的縱坐標(biāo)為.
(1)求a,b的值;
(2)已知直線l:x+y+2=0與圓M相交于G,H兩點(diǎn),求|GH|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計(jì)圖,其中的4個(gè)小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與軸相切,且與圓:外切;
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若直線過定點(diǎn),且與軌跡交于、兩點(diǎn),與圓交于、兩點(diǎn),若點(diǎn)到直線的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,為其右焦點(diǎn),若,設(shè),且,則該橢圓的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)若為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線的參數(shù)方程為(為參數(shù),,且直線與曲線相交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)開展了一次關(guān)于“垃圾分類”問卷調(diào)查的實(shí)踐活動(dòng),組織部分學(xué)生干部在幾個(gè)大型小區(qū)隨機(jī)抽取了共50名居民進(jìn)行問卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會(huì)對問卷結(jié)果進(jìn)行了統(tǒng)計(jì),并將其中一個(gè)問題“是否知道垃圾分類方法(知道或不知道)”的調(diào)查結(jié)果統(tǒng)計(jì)如下表:
年齡(歲) | ||||||
頻數(shù) | 14 | 12 | 8 | 6 | ||
知道的人數(shù) | 3 | 4 | 8 | 7 | 3 | 2 |
(1)求上表中的的值,并補(bǔ)全右圖所示的的頻率直方圖;
(2)在被調(diào)查的居民中,若從年齡在的居民中各隨機(jī)選取1人參加垃圾分類知識講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)針對某一線城市30~50歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購買六類高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶外用品、珠寶首飾、箱包)的金額(萬元)的頻數(shù)分布表如下:
女性 | 金額 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性 | 金額 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)將頻率視為概率,估計(jì)該城市中年人購買六類高價(jià)商品的金額不低于5000元的概率.
(2)把購買六類高價(jià)商品的金額不低于5000元的中年人稱為“高收入人群”,根據(jù)已知條件完成列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為“高收入人群”與性別有關(guān)?
高收入人群 | 非高收入人群 | 合計(jì) | |
女性 | 60 | ||
男性 | 180 | ||
合計(jì) | 500 |
參考公式:,其中
參考附表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為.
(1)若,過點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值;
(2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問:是否存在實(shí)數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com