【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計(jì)算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
【答案】(1),;(3);(3).
【解析】試題分析:(1)因?yàn)榛貧w直線必過樣本中心點(diǎn),求得;(2)利用公式求得,再和現(xiàn)有數(shù)據(jù)進(jìn)行比較;(3)是古典概型,由題意列出從這口井中隨機(jī)選取口井的可能情況,求出概率.
試題解析:因?yàn)?/span>,,回歸只需必過樣本中心點(diǎn),則
,
故回歸只需方程為,
當(dāng)時(shí),,即的預(yù)報(bào)值為.………………4分
因?yàn)?/span>,,所以
.
,
即,.
,,均不超過,因此使用位置最接近的已有舊井;………………8分
易知原有的出油量不低于的井中,這口井是優(yōu)質(zhì)井,這口井為非優(yōu)質(zhì)井,由題意從這口井中隨機(jī)選取口井的可能情況有:,,,共種,其中恰有口是優(yōu)質(zhì)井的有中,所以所求概率是.………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)噸乙產(chǎn)品可獲利萬元,則該企業(yè)每天可獲得最大利潤為___________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系中的一點(diǎn),有下列說法:
①點(diǎn)到坐標(biāo)原點(diǎn)的距離為;
②的中點(diǎn)坐標(biāo)為;
③點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為;
④點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)的坐標(biāo)為;
⑤點(diǎn)關(guān)于坐標(biāo)平面對稱的點(diǎn)的坐標(biāo)為.
其中正確的個(gè)數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)(其中為參數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)如果是奇函數(shù),求實(shí)數(shù)的值;
(3)已知,在(2)的條件下,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點(diǎn)D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)OD⊥AB時(shí),求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及所有零點(diǎn);
(2)設(shè),,為函數(shù)圖象上的三個(gè)不同點(diǎn),且
.問:是否存在實(shí)數(shù),使得函數(shù)在點(diǎn)處的切線與直線平行?若存在,求出所有滿足條件的實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 “中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān).”出現(xiàn)這種現(xiàn)象是大家受法不責(zé)眾的“從眾”心理影響,從而不顧及交通安全.某校對全校學(xué)生過馬路方式進(jìn)行調(diào)查,在所有參與調(diào)查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人抽取了45 人,求n的值;
(Ⅱ)在“帶頭闖紅燈”的人中,將男生的200人編號為1,2,…,200;將女生的300人編號為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動,若抽取的第一個(gè)人的編號為100,把抽取的4人看成一個(gè)總體,從這4人中任選取2人,求這兩人均是女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com