【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線長(zhǎng)均為3,記過圓錐軸的平面為平面(與兩個(gè)圓錐側(cè)面的交線為),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線即雙曲線的一部分,且雙曲線的兩條漸近線分別平行于,則雙曲線的離心率為( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)
(1)求證:平面;
(2)在圖2中,若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓的直徑,點(diǎn)是圓上異于,的點(diǎn),直線平面,,分別是,的中點(diǎn).
(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;
(Ⅱ)設(shè),求二面角大小的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國(guó)某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺(tái)) | 8 | 10 | 13 | 25 | 24 |
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車車主的性別與購(gòu)車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
購(gòu)置傳統(tǒng)燃油車 | 購(gòu)置新能源車 | 總計(jì) | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計(jì) | 30 |
(1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān);
參考公式:,,其中.,若,則可判斷與線性相關(guān).
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國(guó)資委.黨委高度重視扶貧開發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國(guó)家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時(shí)間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若二項(xiàng)式的展開式中存在常數(shù)項(xiàng),則的最小值為______;
(2)從6名志愿者中選出4人,分別參加兩項(xiàng)公益活動(dòng),每項(xiàng)活動(dòng)至少1人,則不同安排方案的種數(shù)為____.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn), 是上異于,的點(diǎn), .
(1)證明:平面平面;
(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com