P、Q、M、N四點都在中心為坐標(biāo)原點,離心率e=,左焦點F(-1,0)的橢圓上,已知
與
共線,
與
共線,且
·
=0,求四邊形PMQN的面積的最大值與最小值.
解析:橢圓方程為 ∵ 設(shè)PQ的方程為ky=x+1,代入橢圓方程消去x得 (2+k2)y2-2ky-1=0. 設(shè)P(x1,y1),Q(x1,y1)則 |PQ|= = �。� (1)當(dāng)k≠0時,MN的斜率為 同理可得|MN|= 故四邊形面積S= 令u=k2+ 當(dāng)k=±1時,u=2,S= ∴ (2)當(dāng)k=0時,MN為橢圓的長軸, |MN|=2 綜合(1)(2)知,四邊形PMQN面積的最大值為2,最小值為 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
2 |
PF |
FQ |
MF |
FN |
PF |
MF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
PF |
FQ |
MF |
FN |
PF |
MF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
PF |
FQ |
MF |
FN |
PF |
MF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年大綱版高三上學(xué)期單元測試(8)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
P、Q、M、N四點都在橢圓上,F為橢圓在y軸正半軸上的焦點.已知
與
共
線,且與
共線.求四邊形PMQN的面積的最小值和最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com