【題目】長沙某公司對其主推產(chǎn)品在過去5個月的月廣告投入xi(百萬元)和相應(yīng)的銷售額yi(百萬元)進行了統(tǒng)計,其中i=1,2,3,4,5,對所得數(shù)據(jù)進行整理,繪制散點圖并計算出一些統(tǒng)計量如下:
,,,,,
,,其中,i=1,2,3,4,5.
(Ⅰ)根據(jù)散點圖判斷,與哪一個適宜作為月銷售額關(guān)于月廣告投入xi的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及題中所給數(shù)據(jù),建立y關(guān)于x的回歸方程,并據(jù)此估計月廣告投入220萬元時的月銷售額.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在R上函數(shù),有以下四個命題:
(1)直線與的圖像的公共點個數(shù)一定為1;
(2)若在區(qū)間上單調(diào)增函數(shù),在上也是單調(diào)增函數(shù),則函數(shù)在R上一定是單調(diào)增函數(shù);
(3)若為奇函數(shù),則一定有;
(4)若,則函數(shù)一定不是偶函數(shù).
其中正確的命題序號是_______.(請寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是常數(shù)且.
(1)若曲線在處的切線經(jīng)過點,求的值;
(2)若(是自然對數(shù)的底數(shù)),試證明:①函數(shù)有兩個零點,②函數(shù)的兩個零點滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的定義域為,對于定義域內(nèi)的任意存在實數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,寫出所有的值;若不具有“性質(zhì)”,請說明理由.
(2)設(shè)函數(shù)具有“性質(zhì)”,且當時,,求當時函數(shù)的解析式;若與交點個數(shù)為1001個,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足若為等比數(shù)列,且
(1)求和;
(2)設(shè),記數(shù)列的前項和為
①求;
②求正整數(shù) k,使得對任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)與,記集合;
(1)設(shè),,求.
(2)設(shè),,若,求實數(shù)a的取值范圍.
(3)設(shè).如果求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,平面平面, , , .
(1)證明:在線段上存在一點,使得平面;
(2)若,在(1)的條件下,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實數(shù)零點,求滿足條件的實數(shù)的集合;
(2)若對于任意的時,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點有且只有四個.類似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點 ( )
A. 有且只有一個 B. 有且只有三個 C. 有且只有四個 D. 有且只有五個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com