【題目】設(shè)數(shù)列的前n項(xiàng)和為,對一切,點(diǎn)都在函數(shù)的圖像上.
(1)證明:當(dāng)時(shí),;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)為數(shù)列的前n項(xiàng)的積,若不等式對一切成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)證明見解析; (2) (3)
【解析】
(1)根據(jù)點(diǎn)在函數(shù)圖像上,代入點(diǎn)坐標(biāo),化簡后結(jié)合即可證明.
(2)根據(jù)(1)所得遞推公式,遞推作差后可得奇偶項(xiàng)分別為等差數(shù)列,根據(jù)和公差即可求得通項(xiàng)公式.
(3)根據(jù)為數(shù)列,代入的通項(xiàng)公式求得的表達(dá)式,構(gòu)造函數(shù);代入的通項(xiàng)公式求得函數(shù),根據(jù)恒成立求得即可.通過的單調(diào)性求得,代入解不等即可得實(shí)數(shù)a的取值范圍.
(1)證明: 因?yàn)閷σ磺?/span>,點(diǎn)都在函數(shù)的圖像上
所以,化簡可得
當(dāng)時(shí),
兩式相減可得
即()
原式得證.
(2)由(1)可知
所以
兩式相減,可得
所以數(shù)列的奇數(shù)項(xiàng)公差為4的等差數(shù)列,偶數(shù)項(xiàng)公差為4的等差數(shù)列.
由(1)可知
則當(dāng)時(shí), 求得
則當(dāng)時(shí), ,即求得
所以當(dāng)為奇數(shù)時(shí),
所以當(dāng)為偶數(shù)時(shí),
綜上可知數(shù)列的通項(xiàng)公式為
(3)因?yàn)?/span>
所以
所以
又因?yàn)?/span>
所以對一切成立
即對一切成立
只需滿足即可
令
則
所以
所以
即為單調(diào)遞減數(shù)列
所以
所以即可,化簡可得
解不等式可得,或
故實(shí)數(shù)a的取值范圍為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織高一年級學(xué)生到古都西安游學(xué).在某景區(qū),由于時(shí)間關(guān)系,每個(gè)班只能在甲、乙、丙三個(gè)景點(diǎn)中選擇一個(gè)游覽.高一班的名同學(xué)決定投票來選定游覽的景點(diǎn),約定每人只能選擇一個(gè)景點(diǎn),得票數(shù)高于其它景點(diǎn)的入選.據(jù)了解,在甲、乙兩個(gè)景點(diǎn)中有人會選擇甲,在乙、丙兩個(gè)景點(diǎn)中有人會選擇乙.那么關(guān)于這輪投票結(jié)果,下列說法正確的是
①該班選擇去甲景點(diǎn)游覽;
②乙景點(diǎn)的得票數(shù)可能會超過;
③丙景點(diǎn)的得票數(shù)不會比甲景點(diǎn)高;
④三個(gè)景點(diǎn)的得票數(shù)可能會相等.
A. ①② B. ①③ C. ②④ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個(gè)平面,使直線b與平面交于一個(gè)定點(diǎn),且直線平面.
則所有正確結(jié)論的序號為( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù),),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線被圓截得的弦長為時(shí),求的值.
(2)直線的參數(shù)方程為(為參數(shù)),若,垂足為,求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓的方程為:,為圓上任意一點(diǎn),過作軸的垂線,垂足為,點(diǎn)在上,且.
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,的面積為,求的最大值,及直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,是的中點(diǎn),是的中點(diǎn).
(1)求異面直線與所成角的大;
(2)若直三棱柱的體積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,與都為等邊三角形,且側(cè)面與底面互相垂直,為的中點(diǎn),點(diǎn)在線段上,且,為棱上一點(diǎn).
(1)試確定點(diǎn)的位置,使得平面;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為,第n項(xiàng)之后的各項(xiàng)的最小值記為,設(shè).
(1)若為,是一個(gè)周期為4的數(shù)列,寫出的值;
(2)設(shè)d為非負(fù)整數(shù),證明:)的充要條件是是公差為d的等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中(圖1),為的中點(diǎn),,且,現(xiàn)將此平面四邊形沿折起,使得二面角為直二面角,得到一個(gè)多面體,為平面內(nèi)一點(diǎn),且為正方形(圖2),分別為的中點(diǎn).
(1)求證:平面//平面;
(2)在線段上是否存在一點(diǎn),使得平面與平面所成二面角的余弦值為?若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com