隨機挑選一個三位數(shù)I,
(1)求I含有因子5的概率;
(2)求I中恰有兩個數(shù)碼相等的概率.
分析:(1)由題意知本題是一個古典概型,試驗包含的所有事件是三位數(shù)一共有999-100+1=900個,滿足條件的事件是I中含有因子5即I是5的倍數(shù),用組合數(shù)表示出來求出概率.
(2) 可以從構(gòu)造一個三位數(shù)的角度來考慮,即任選三個數(shù)碼構(gòu)成三位數(shù),按照相同的數(shù)碼是否是0分情況,分為相同的數(shù)碼是0,相同的數(shù)碼不是0,分類計數(shù)結(jié)果.最后求出概率.
解答:解:(1)由題意知本題是一個古典概型,
∵試驗包含的所有事件是三位數(shù)一共有999-100+1=900個,
滿足條件的事件是I中含有因子5即I是5的倍數(shù),
其中5的倍數(shù)有C91C101C21=180個
∴概率P=
180
900
=0.2
(2) 可以從構(gòu)造一個三位數(shù)的角度來考慮,即任選三個數(shù)碼構(gòu)成三位數(shù),那么就有900個三位數(shù)
其中按照相同的數(shù)碼是否是0分情況:
如果相同的數(shù)碼是0,那么只能是十位和各位為0,因此有9個(100,200,…900)
如果相同的數(shù)碼不是0,那么百位、十位、個位都可以.
在此基礎(chǔ)上再分情況:三位數(shù)是否含0
如果三位數(shù)中沒有0,則先選擇1個數(shù)碼作為重復的數(shù)碼(9種)
再從剩下的8個數(shù)字選擇1個數(shù)碼(8種),
排列形成三位數(shù)就有 9×3×8=216
0不能放在百位,因此重復的數(shù)碼只能是百位、十位 或者百位、個位兩種放法,
先選擇一個數(shù)碼作為重復的數(shù)碼(9種),放在數(shù)位上(2種),接下來把0填入,
所以形成三位數(shù)就有9×2=18種
因此符合條件的三位數(shù)就有9+216+18=243
∴概率P=
243
900
=0.27
點評:數(shù)字問題是概率中經(jīng)常出現(xiàn)的題目,一般可以列舉出要求的事件,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),而不能列舉的可以借助于排列數(shù)和組合數(shù)來表示.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

隨機挑選一個三位數(shù)I,
(1)求I含有因子5的概率;
(2)求I中恰有兩個數(shù)碼相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年清華大學自主招生數(shù)學試卷(理科)(解析版) 題型:解答題

隨機挑選一個三位數(shù)I,
(1)求I含有因子5的概率;
(2)求I中恰有兩個數(shù)碼相等的概率.

查看答案和解析>>

同步練習冊答案