某工廠2002年生產(chǎn)某種產(chǎn)品2萬件,以后每一年比上一年增產(chǎn)20%,則從________年開始這家工廠生產(chǎn)這種產(chǎn)品的年產(chǎn)量超過12萬件。
2012
設(shè)為這家工廠2002年生產(chǎn)這種產(chǎn)品的年產(chǎn)量,即=2,并將這家工廠2003、2004年生產(chǎn)這種產(chǎn)品的年產(chǎn)量分別記為、,根據(jù)題意,數(shù)列{}是一個(gè)公比為1.2的等比數(shù)列,其通項(xiàng)公式為,根據(jù)題意,設(shè)=12兩邊取常用對數(shù),得
lg2+(n-1)lg1.2=lg12,∴n==="0.7781" 0.0791 +1≈10.84
因?yàn)閥=是增函數(shù),現(xiàn)x取正整數(shù),可知從2012年開始,這家工廠生產(chǎn)這種產(chǎn)品的產(chǎn)量超過12萬臺
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列兩個(gè)函數(shù)完全相同的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個(gè)根,它們分別為
(1)求c的值;
(2)求證;
(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:①的值域?yàn)镸,且MÍ;②對任意不相等的,, 都有||<||.那么,關(guān)于的方程=在區(qū)間上根的情況是   (     )
A.沒有實(shí)數(shù)根B.有且僅有一個(gè)實(shí)數(shù)根
C.恰有兩個(gè)不等的實(shí)數(shù)根D.有無數(shù)個(gè)不同的實(shí)數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則=_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
我國是水資源比較貧乏的國家之一,各地采用價(jià)格調(diào)控等手段以達(dá)到節(jié)約用水的目的。某市用水收費(fèi)標(biāo)準(zhǔn)是:水費(fèi)=基本費(fèi)+超額費(fèi)+定額損耗費(fèi),且有如下三條規(guī)定:
①若每月用水量不超過最低限量立方米時(shí),只付基本費(fèi)9元和每戶每月定額損耗費(fèi)元;
②若每月用水量超過立方米時(shí),除了付基本費(fèi)9元和定額損耗費(fèi)外,超過部分每立方米付元的超額費(fèi);
③每戶每月定額損耗費(fèi)不超過5元。
(1)  求每戶每月水費(fèi)(元)與月用水量(立方米)的函數(shù)關(guān)系式;
(2)  該市一家庭今年第一季度每月的用水量和支付的費(fèi)用如下表所示:
月份
用水量(立方米)
水費(fèi)(元)

4
17

5
23

2.5
11
試分析該家庭今年一、二、三各月份的用水量是否超過最低限量,并求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的函數(shù)的圖像關(guān)于對稱,且當(dāng)時(shí),(其中的導(dǎo)函數(shù)),若
,則的大小關(guān)系是 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是函數(shù) 
的兩個(gè)極值點(diǎn),且,,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果函數(shù)在區(qū)間D上是凸函數(shù),那么對,都有,若在區(qū)間上是凸函數(shù),那么在中,的最大值為(          )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案