已知點G是△ABC的重心,
AG
AB
AC
(λ,μ∈R)
,那么λ+μ=
 
;若∠A=120°,
AB
AC
=-2
,則|
AG
|
的最小值是
 
分析:由三角形的重心分中線為
1
2
得λ,μ的值,用向量的數(shù)量積求|
AC
|
|
AB
|
值,用向量模的平方等于向量的平方表示出|
AG
|
2

再用基本不等式求出最小值.
解答:解:∵點G是△ABC的重心
∴點G分中線為
1
2

AG
=
2
3
×
1
2
AB
+
AC
)=
1
3
AB
+
AC

AG
AB
AC
(λ,μ∈R)

λ=
1
3
,μ=
1
3

∴λ+μ=
2
3

故答案為
2
3

設(shè)|
AC
|
=b,|
AB
|
=c
∵∠A=120°,
AB
AC
=-2

∴bccos120°=-2即bc=4
AG
=
1
3
AB
+
AC


|
AG
|
2
=
1
9
AB
2
+ 2
AB
AC
+
AC
2
)
=
1
9
(b2+c2-4)
1
9
(2bc-4)
=
4
9

|
AG
|=
2
3
當(dāng)且僅當(dāng)b=c時取等號.
故答案為∴|
AG
|
的最小值為
2
3
點評:考查三角形的重心性質(zhì)、向量的數(shù)量積、向量模的求法、用基本不等式求最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點M,滿足|
MA
|=|
MC
|
GM
AB
(λ∈R)
(若△ABC的頂點坐標(biāo)為A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標(biāo)為G(
x1+x2+x3
3
y1+y2+y3
3
)
).
(1)求點C的軌跡E的方程.
(2)設(shè)(1)中曲線E的左、右焦點分別為F1、F2,過點F2的直線l交曲線E于P、Q兩點,求△F1PQ面積的最大值,并求出取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若
AP
AB
AC
,則λ+μ
的取值范圍是( 。
A、(
1
2
,1)
B、(
2
3
,1)
C、(1,
3
2
)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知奇函數(shù)f(x)滿足f(x+3)=f(x),當(dāng)x∈(0,1)時,函數(shù)f(x)=3x-1,則f(log
1
3
36)
=
 

(理)已知點G是△ABC的重心,O是空間任意一點,若
OA
+
OB
+
OC
OG
,則λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列六個命題:
sin1<3sin
1
3
<5sin
1
5

②若f'(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
③“?x0∈R,使得ex0<0”的否定是:“?x∈R,均有ex≥0”;
④已知點G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點,且
AM
=x
AB
,
AN
=y
AC
,則
1
x
+
1
y
=3
;
⑤已知a=
π
0
sinxdx,
(
3
,a)
到直線
3
x-y+1=0
的距離為1;
⑥若|x+3|+|x-1|≤a2-3a,對任意的實數(shù)x恒成立,則實數(shù)a≤-1,或a≥4;
其中真命題是
①③④⑤
①③④⑤
(把你認(rèn)為真命題序號都填在橫線上)

查看答案和解析>>

同步練習(xí)冊答案