(本題滿分12分)甲、乙、丙三人組成一組,參加一個闖關游戲團體賽,三人各自獨立闖關,其中甲闖關成功的概率為,甲、乙都闖關成功的概率為,乙、丙都闖關成功的概率為,每人闖關成功得2分,三人得分之和記為小組團體總分.
(1)求乙、丙各自闖關成功的概率;
(2)求團體總分為4分的概率;
(3)若團體總分不小于4分,則小組可參加復賽,求該小組參加復賽的概率.
(1)
(2)
(3)
記甲、乙、丙三人各自獨立闖關成功的事件依次為A、B、C,則由已知條件得
   ……………………1分
(1)  ……………………3分
同理,                      ……………………4分
(2)每人闖關成功記2分,要使團體總分為4分,則需要兩人闖關成功
兩人闖關成功的概率
即團體總分為4分的概率          ……………………8分
(3)團體總分不小于4分,則團體總分可能為4分,可能為6分………9分
團體總分為6分,需要三人都闖關成功,三人闖關成功的概率 …11分
由(2)知團體總分為4分的概率
              ………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某企業(yè)準備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本與產(chǎn)量的函數(shù)關系式為
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格與產(chǎn)量的函數(shù)關系式如下表所示:
市場情形
概率
價格與產(chǎn)量的函數(shù)關系式

0.4


0.4


0.2

分別表示市場情形好、中差時的利潤,隨機變量,表示當產(chǎn)量為,而市場前景無法確定的利潤.
(I)分別求利潤與產(chǎn)量的函數(shù)關系式;
(II)當產(chǎn)量確定時,求期望
(III)試問產(chǎn)量取何值時,取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)現(xiàn)有分別寫有數(shù)字1,2,3,4,5的5張白色卡片、5張黃色卡片、5張紅色卡片。每次試驗抽一張卡片,并定義隨機變量如下:若是白色,則;若是黃色,則;若是紅色,則;若卡片數(shù)字是,則
(1)求概率
(2)求數(shù)字期望與數(shù)字方差

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
第16屆亞運會將于今年11月在我市舉行,射擊隊運動員們正在積極備戰(zhàn). 若某運動員每次射擊成績?yōu)?0環(huán)的概率為. 求該運動員在5次射擊中,
(1)恰有3次射擊成績?yōu)?0環(huán)的概率;
(2)至少有3次射擊成績?yōu)?0環(huán)的概率;
(3)射擊成績?yōu)?0環(huán)的均值(數(shù)學期望).
(結果用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某射手每次射擊擊中目標的概率是,且各次射擊的結果互不影響。
(Ⅰ)假設這名射手射擊5次,求恰有2次擊中目標的概率
(Ⅱ)假設這名射手射擊5次,求有3次連續(xù)擊中目標。另外2次未擊中目標的概率;
(Ⅲ)假設這名射手射擊3次,每次射擊,擊中目標得1分,未擊中目標得0分,在3次射擊中,若有2次連續(xù)擊中,而另外1次未擊中,則額外加1分;若3次全擊中,則額外加3分,記為射手射擊3次后的總的分數(shù),求的分布列。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),、是常數(shù).
⑴若是從、、、五個數(shù)中任取的一個數(shù),是從、三個數(shù)中任取的一個數(shù),求函數(shù)為奇函數(shù)的概率.
⑵若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求函數(shù)有零點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.
某商場搞促銷,當顧客購買商品的金額達到一定數(shù)量之后可以抽獎,根據(jù)顧客購買商品的金額,從箱中(裝有4只紅球,3只白球,且除顏色外,球的外部特征完全相同)每抽到一只紅球獎勵20元的商品(當顧客通過抽獎的方法確定了獲獎商品后,即將小球全部放回箱中)
(1)當顧客購買金額超過500元而少于1000元(含1000元)時,可從箱中一次隨機抽取3個小紅球,求其中至少有一個紅球的概率;
(2)當顧客購買金額超過1000元時,可一次隨機抽取4個小球,設他所獲獎商品的金額為元,求的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 
已知在3支不同編號的槍中有2支已經(jīng)試射校正過,1支未經(jīng)試射校正。某射手若使用其中校正過的槍,每射擊一次擊中目標的概率為;若使用其中未校正的槍,每射擊一次擊中目標的概率為,假定每次射擊是否擊中目標相互之間沒有影響。
(I)若該射手用這2支已經(jīng)試射校正過的槍各射擊一次,求目標被擊中的次數(shù)為偶數(shù)的概率;
(II)若該射手用這3支搶各射擊一次,求目標至多被擊中一次的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
四枚不同的金屬紀念幣、、,投擲時,A、B兩枚正面向上的概率為分別為,另兩枚C、D正面向上的概率分別為.這四枚紀念幣同時投擲一次,設表示出現(xiàn)正面向上的枚數(shù)。
(1)若A、B出現(xiàn)一正一反與C、D出現(xiàn)兩正的概率相等,求的值;
(2)求的分布列及數(shù)學期望(用表示);
(3)若有2枚紀念幣出現(xiàn)正面向上的概率最大,求的取值范圍。

查看答案和解析>>

同步練習冊答案