(本小題12分)已知二次函數(shù)滿足:對(duì)任意實(shí)數(shù)x,都有,且當(dāng)時(shí),有成立.
(1)求;
(2)若的表達(dá)式;
(3)設(shè),若圖上的點(diǎn)都位于直線的上方,求實(shí)
數(shù)m的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為實(shí)數(shù),,),
(1)若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/c7/4e0c766e6e2cc08cd346da50b7498332.gif" style="vertical-align:middle;" />,求的表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),,,且函數(shù)為偶函數(shù),判斷是否大于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖象與x軸有兩個(gè)不同的公共點(diǎn),且,當(dāng)時(shí),恒有.
(1)當(dāng)時(shí),求不等式的解集;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,且,求a的值;
(3)若,且對(duì)所有恒成立,求正實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某地方政府為地方電子工業(yè)發(fā)展,決定對(duì)某一進(jìn)口電子產(chǎn)品征收附加稅。已知這種電子產(chǎn)品國內(nèi)市場零售價(jià)為每件250元,每年可銷售40萬件,若政府征收附加稅率為t元時(shí),則每年減少y萬件。
(1)收入表示為征收附加稅率的函數(shù);
(2)在該項(xiàng)經(jīng)營中每年征收附加稅金不低于600萬元,那么附加稅率應(yīng)控制在什么范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)的個(gè)數(shù);
(2)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對(duì)任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,請(qǐng)說
明理由。
(3)若對(duì)任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標(biāo)為( )
A.(1,0) | B.(2,8) |
C.(1,0)或(﹣1,﹣4) | D.(2,8)或(﹣1,﹣4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com