一個幾何體的三視圖如圖(圖中三角形為正三角形)所示,求它的表面積和體積.
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體為正三棱柱,由左視圖知正三棱柱的底面三角形的高為h=2
3
mm
,再求得底面三角形的邊長,把數(shù)據(jù)代入棱柱的表面積公式與體積公式計算.
解答: 解:由三視圖知:幾何體為正三棱柱,高為2mm,
由左視圖知正三棱柱的底面三角形的高為h=2
3
mm
,
設(shè)底面邊長為a,則
3
2
a=2
3
,∴a=4,
∴三棱柱的表面積S=3×4×2+2×
1
2
×4×2
3
=24+8
3
(mm2),
四棱柱的體積V=Sh=4
3
×2=8
3
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x+3,(x>10)
f(x+5),(x≤10)
,則f(5)的值為( 。
A、16B、18C、21D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-2bx+1.
(1)設(shè)集合P={1,2,3},Q={-1,1,2,3,4},從集合P中隨機取一個數(shù)作為a,從集合Q中隨機取一個數(shù)作為b,求方程f(x)=0有兩相等實根的概率;
(2)設(shè)點(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1的離心率為e=
3
2
且與雙曲線C2
x2
b2
-
y2
b2+1
=1有共同焦點.
(1)求橢圓C1的方程;
(2)在橢圓C1落在第一象限的圖象上任取一點作C1的切線l,求l與坐標(biāo)軸圍成的三角形的面積的最小值;
(3)設(shè)橢圓C1的左、右頂點分別為A,B,過橢圓C1上的一點D作x軸的垂線交x軸于點E,若C點滿足
AB
BC
AD
OC
,連結(jié)AC交DE于點P,求證:PD=PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,設(shè)函數(shù)g(x)=lg2x-2algx+4,x∈[
1
10
,+∞) 的最小值為h(a)
(Ⅰ)求h(a)的表達(dá)式;
(Ⅱ)是否存在區(qū)間[m,n],使得函數(shù)h(a)在區(qū)間[m,n]上的值域為[2m,2n]?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個命題:p:不等式|x|+|x-1|≥m的解集為R;q:函數(shù)f(x)=-(7-3m)x是減函數(shù).若這兩個命題中有且只有一個真命題,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=2py(p>0)經(jīng)過點(
2
,
1
2
),直線l的方程為y=-1.
(1)求p的值;
(2)若點M是直線l上任意一點,過M點作拋物線的兩條切線,切點分別為于A,B兩點,設(shè)線段AB的中點為N,求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=
x
在點P(a,
a
)處的切線與兩坐標(biāo)軸圍成的三角形的面積為2,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={f(x,y)=0|f(x,y)=(x-a)2+(y-a)2-
a2
2
,a=±1,±2,±3},B={g(x,y)=0|g(x,y)=x+y-b,b=±1,±2,±3},則A中方程的曲線與B中方程的曲線的交點個數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案