((本小題滿分12分)
如圖,已知四棱錐PABCD的底面是直角梯形,∠ABC=∠BCD=90o,ABBCPBPC=2CD=2,側(cè)面PBC⊥底面ABCD,OBC的中點(diǎn),AOBDE.

(1)求證:PABD;
(2)求二面角PDCB的大小.
解法一:(1)證明:∵PB=PC,O為BC的中點(diǎn),
∴PO⊥BC.
又∵平面PBC⊥平面ABCD,
平面PBC∩平面ABCD=BC,
∴PO⊥平面ABCD.在梯形ABCD中,
可得Rt△ABO≌Rt△BCD.
∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90o,
即AO⊥BD.
∵PA在平面ABCD內(nèi)的射影為AO,∴PA⊥BD…………………………6分
(2)解:∵DC⊥BC,且平面PBC⊥平面ABCD,
∴DC⊥平面PBC.
∵PC平面PBC,∴DC⊥PC.
∴∠PCB為二面角P—DC—B的平面角.
∵△PCB是等邊三角形,
∴∠PCB=60o,即面角P—DC—B的大小為60o……………………12分
解法二:(1)因?yàn)椤鱌BC是等邊三角形,O是BC的中點(diǎn),由側(cè)面PBC⊥底面ABCD得PO⊥底面ABCD.以BC中點(diǎn)O為原點(diǎn),以BC所在直線為x軸,過點(diǎn)與AB平行的直線為y軸,建立如圖所示的空間直角坐標(biāo)系O—xyz.

(1)證明:在直角梯形中,AB="BC=2. "
CD=1,在等邊三角形中PBC中,PO=.
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,).
=(-2,-1,0),=(1,-2,-).
·=(-2)×1+(-1)×(-2)+0×(-)=0,
,即PA⊥BD………………………………………………6分
(2)解:取PC的中點(diǎn)N,則N(-,0,).于是=(-,0,).
∵C(-1,0,0),∴=(0,1,0),=(1,0,),
·=(-)×1+0×0+×=0
⊥平面PDC.顯然=(0,0,),且⊥平面ABCD.
所夾角等于所求二面角的平面角.
·=(-)×0+0×0+×=,
||=,||=,∴cos<,>=.
∴二面角P—DC—B的大小為60o………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條直線若同時(shí)平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線的位置關(guān)系是( )
A.異面 B.平行C.相交D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四面體的三條棱兩兩垂直,,,為四面體外一點(diǎn).給出下列命題.
①不存在點(diǎn),使四面體有三個(gè)面是直角三角形
②不存在點(diǎn),使四面體是正三棱錐
③存在點(diǎn),使垂直并且相等
④存在無數(shù)個(gè)點(diǎn),使點(diǎn)在四面體的外接球面上
其中真命題的序號(hào)是
A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)條件甲:直四棱柱中,棱長(zhǎng)都相等;條件乙:直四棱柱是正方體,那么甲是乙的                              (     )
A.充分必要條件B.充分非必要條件
C.必要非充分條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求異面直線PC與BD所成的角;
(2)在線段PB上是否存在一點(diǎn)E,使PC⊥平面ADE?若存在,確定E點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面上有四點(diǎn),連結(jié)其中的兩點(diǎn)的一切直線中的任何兩條直線不重合、不平行、不垂直,從每一點(diǎn)出發(fā),向其他三點(diǎn)作成的一切直線作垂線,則這些垂線的交點(diǎn)個(gè)數(shù)最多為
A.66B.60C.52D.44

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如題19圖,平行六面體的下底面是邊長(zhǎng)為的正方形,,且點(diǎn)在下底面上的射影恰為點(diǎn).

(Ⅰ)證明:;
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

本題(1)(2)(3)三個(gè)選答題,每小題5分,請(qǐng)考生任選1題作答,如果多做,則按所做的前1題計(jì)分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點(diǎn)E,F(xiàn)分別為線段AB,CD的中點(diǎn),則EF="          " .

(2)(選修4-4,坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系(中,曲線的交點(diǎn)的極坐標(biāo)為         .
(3)(選修4-1,不等式選講)
已知函數(shù).若不等式,則實(shí)數(shù)的值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,在正三角形ABC中,D、E、F分別為各邊的中點(diǎn),G、H、I、J分別為AF、AD、BE、DE的中點(diǎn).將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數(shù)為(   )

A.90°            B.60°            C.45°         D.0°

查看答案和解析>>

同步練習(xí)冊(cè)答案