【題目】某公司計(jì)劃在報(bào)刊與網(wǎng)絡(luò)媒體上共投放30萬元的廣告費(fèi),根據(jù)計(jì)劃,報(bào)刊與網(wǎng)絡(luò)媒體至少要投資4萬元.根據(jù)市場前期調(diào)研可知,在報(bào)刊上投放廣告的收益與廣告費(fèi)滿足,在網(wǎng)絡(luò)媒體上投放廣告的收益與廣告費(fèi)滿足,設(shè)在報(bào)刊上投放的廣告費(fèi)為(單位:萬元),總收益為(單位:萬元).
(1)當(dāng)在報(bào)刊上投放的廣告費(fèi)是18萬元時(shí),求此時(shí)公司總收益;
(2)試問如何安排報(bào)刊、網(wǎng)絡(luò)媒體的廣告投資費(fèi),才能使總收益最大?
【答案】(1)16萬元;(2)當(dāng)在報(bào)刊上投放的8萬元廣告費(fèi),在網(wǎng)絡(luò)媒體上投放22萬元廣告費(fèi)時(shí),總收益最大,且最大總收益為17萬元.
【解析】
(1)根據(jù)題意收益分為兩部分,報(bào)刊廣告收益和網(wǎng)絡(luò)媒體廣告收益,代入具體數(shù)值即可求解;
(2)列出總收益對應(yīng)的表達(dá)式,再利用換元法結(jié)合二次函數(shù)即可求得收益最大值
(1)當(dāng)時(shí),此時(shí)在網(wǎng)絡(luò)媒體上的投資為12萬元,
所以總收益 (萬元).
(2)由題知,在報(bào)刊上投放的廣告費(fèi)為萬元,則在網(wǎng)絡(luò)媒體上投放廣告費(fèi)為萬元,
依題意得,解得,
所以,
令,則,所以=.
當(dāng),即萬元時(shí),的最大值為17萬元.
所以,當(dāng)在報(bào)刊上投放的8萬元廣告費(fèi),在網(wǎng)絡(luò)媒體上投放22萬元廣告費(fèi)時(shí),總收益最大,且最大總收益為17萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個(gè);
③為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;
④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的斜率為,直線與橢圓C交于兩點(diǎn).點(diǎn)為橢圓上一點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合與的關(guān)系):
年份代號() | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當(dāng)年收入(千萬元) | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)試預(yù)測2020年該企業(yè)的收入.
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,頂點(diǎn)A的坐標(biāo)是(3,0),頂點(diǎn)B的坐標(biāo)是(1,2),記△OAB位于直線左側(cè)圖形的面積為f(t).
(1)求函數(shù)f(t)的解析式;
(2)設(shè)函數(shù),求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:與直線:,動(dòng)直線過定點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于、兩點(diǎn),點(diǎn)M是PQ的中點(diǎn),直線與直線相交于點(diǎn)N.探索是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,且恒成立,求的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點(diǎn)分別為過的直線交橢圓于兩點(diǎn),且
(1)若,求橢圓的標(biāo)準(zhǔn)方程
(2)若求橢圓的離心率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com