【題目】從某地區(qū)隨機抽測120名成年女子的血清總蛋白含量(單位:),由測量結(jié)果得如圖頻數(shù)分布表:
(1)①仔細觀察表中數(shù)據(jù),算出該樣本平均數(shù)______;
②由表格可以認為,該地區(qū)成年女子的血清總蛋白含量Z服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本標準差s.經(jīng)計算,該樣本標準差.
醫(yī)學上,Z過高或過低都為異常,Z的正常值范圍通常取關(guān)于對稱的區(qū)間,且Z位于該區(qū)間的概率為,試用該樣本估計該地區(qū)血清總蛋白正常值范圍.
120名成年女人的血清總蛋白含量的頻數(shù)分布表 | |||
分組 | 頻數(shù)f | 區(qū)間中點值x | |
2 | 65 | 130 | |
8 | 67 | 536 | |
12 | 69 | 828 | |
15 | 71 | 1065 | |
25 | 73 | 1825 | |
24 | 75 | 1800 | |
16 | 77 | 1232 | |
10 | 79 | 790 | |
7 | 81 | 567 | |
1 | 83 | 83 | |
合計 | 120 | 8856 |
(2)結(jié)合(1)中的正常值范圍,若該地區(qū)有5名成年女子檢測血清總蛋白含量,測得數(shù)據(jù)分別為83.2,80,73,59.5,77,從中隨機抽取2名女子,設血清總蛋白含量不在正常值范圍的人數(shù)為X,求X的分布列和數(shù)學期望.
附:若,則.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是矩形,,點為的中點,與交于點.
(Ⅰ)求異面直線與所成角的余弦值;
(Ⅱ)求證:;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解手機品牌的選擇是否和年齡的大小有關(guān),隨機抽取部分華為手機使用者和蘋果機使用者進行統(tǒng)計,統(tǒng)計結(jié)果如下表:
年齡 手機品牌 | 華為 | 蘋果 | 合計 |
30歲以上 | 40 | 20 | 60 |
30歲以下(含30歲) | 15 | 25 | 40 |
合計 | 55 | 45 | 100 |
附:
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
根據(jù)表格計算得的觀測值,據(jù)此判斷下列結(jié)論正確的是( )
A.沒有任何把握認為“手機品牌的選擇與年齡大小有關(guān)”
B.可以在犯錯誤的概率不超過0.001的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
C.可以在犯錯誤的概率不超過0.01的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
D.可以在犯錯誤的概率不超過0.01“手機品牌的選擇與年齡大小無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在國家積極推動美麗鄉(xiāng)村建設的政策背景下,各地根據(jù)當?shù)厣鷳B(tài)資源打造了眾多特色紛呈的鄉(xiāng)村旅游勝地.某人意圖將自己位于鄉(xiāng)村旅游勝地的房子改造成民宿用于出租,在旅游淡季隨機選取100天,對當?shù)匾延械牧g不同價位的民宿進行跟蹤,統(tǒng)計其出租率(),設民宿租金為(單位:元/日),得到如圖所示的數(shù)據(jù)散點圖.
(1)若用“出租率”近似估計旅游淡季民宿每天租出去的概率,求租金為388元的那間民宿在淡季內(nèi)的三天中至少有2天閑置的概率.
(2)①根據(jù)散點圖判斷,與哪個更適合于此模型(給出判斷即可,不必說明理由)?根據(jù)判斷結(jié)果求回歸方程;
②若該地一年中旅游淡季約為280天,在此期間無論民宿是否出租,每天都要付出的固定成本,若民宿出租,則每天需要再付出的日常支出成本.試用①中模型進行分析,旅游淡季民宿租金約定為多少元時,該民宿在這280天的收益達到最大?
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為;.
參考數(shù)據(jù):記,,,,
,,
,,
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有長分別為、、的鋼管各3根(每根鋼管的質(zhì)地均勻、粗細相同且富有不同的編號),從中隨機抽取根(假設各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(I)當時,記事件,求;
(II)當時,若用表示新焊成的鋼管的長度(焊接誤差不計),求的分布列和數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,函數(shù)的圖象在點處的切線平行于軸.
(Ⅰ)求的值
(Ⅱ)設,若的所有零點中,僅有兩個大于,設為,()
(1)求證:,.
(2)過點,的直線的斜率為,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com