【題目】設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x2﹣2x,則當(dāng)x∈(﹣∞,0)時(shí),f(x)= .
【答案】﹣x2﹣2x
【解析】解:∵設(shè)f(x)是R上的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2﹣2x,
∴當(dāng)x∈(﹣∞,0)時(shí),﹣x∈(0,+∞),
f(x)=﹣f(﹣x)=﹣[(﹣x)2+2x]=﹣x2﹣2x,
所以答案是﹣x2﹣2x.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna,對x1 , x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a﹣1恒成立,則a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=2+log2x(x≥1)的值域?yàn)椋?/span> )
A.(2,+∞)
B.(﹣∞,2)
C.[2,+∞)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知f(x)=2|x﹣2|+|x+1|
(1)求不等式f(x)<6的解集;
(2)設(shè)m,n,p為正實(shí)數(shù),且m+n+p=f(2),求證:mn+np+pm≤3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=A∪B={x∈Z|0≤x≤6},A∩(UB)={1,3,5},則B=( )
A.{2,4,6}
B.{1,3,5}
C.{0,2,4,6}
D.{x∈Z|0≤x≤6}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)為奇函數(shù),則它的圖象必經(jīng)過點(diǎn)( )
A.(0,0)
B.(﹣a,﹣f(a))
C.(a,f(﹣a))
D.(﹣a,﹣f(﹣a))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com