精英家教網 > 高中數學 > 題目詳情

如圖,一個小球從M處投入,通過管道自上而下落到A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.

某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設為1,2,3等獎.

(Ⅰ)已知獲得1,2,3等獎的折扣率分別為50%,70%,90%.記隨機變量ξ為獲得k(k=1,2,3)等獎的折扣率,求隨機變量ξ的分布列及期望Eξ;

(Ⅱ)若有3人次(投入1球為1人次)參加促銷活動,記隨機變量η為獲得1等獎或2等獎的人次,求P(η=2).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,一個小球從M處投入,通過管道自上而下落A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設為l,2,3等獎.
(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量ξ為獲得k(k=1,2,3)等獎的折扣率,求隨機變量ξ的分布列及期望Εξ;
(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量η為獲得1等獎或2等獎的人次,求P(η=2).

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖.一個小球從M處投入,通過管道自上而下落到A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C.則分別設為1,2,3等獎.
(1)求投入小球1次獲得1等獎的概率;
(2)已知獲得1,2,3等獎的折扣率分別為50%,70%,90%.記隨機變量ξ為獲得k(k=1,2,3)等獎的折扣率.求隨機變量ξ的分布列及數學期望Eξ;
(3)若有3人次(投入1球為1人次)參加促銷活動,記隨機變量η為獲得1等獎或2等獎的人次.求P(η=2).(即求3次中有二次獲得1等獎或2等獎的概率)

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分l4分)如圖,一個小球從M處投入,通過管道自上而下落ABC。已知小球從每個叉口落入左右兩個 管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設為l,2,3等獎.

(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎的折扣率,求隨機變量的分布列及期望

(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量為獲得1等獎或2等獎的人次,求

查看答案和解析>>

科目:高中數學 來源:2010年普通高等學校招生全國統(tǒng)一考試(浙江卷)理科數學 題型:解答題

 

(19)        (本題滿分l4分)如圖,一個小球從M處投入,通過管道自

上而下落ABC已知小球從每個叉口落入左右兩個

 管道的可能性是相等的.

某商家按上述投球方式進行促銷活動,若投入的小球落

到A,B,C,則分別設為l,2,3等獎.

(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎的折扣率,求隨機變量的分布列及期望;

(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量為獲得1等獎或2等獎的人次,求

 

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(浙江卷)解析版(理) 題型:解答題

 [番茄花園1]  (本題滿分l4分)如圖,一個小球從M處投入,通過管道自

上而下落ABC。已知小球從每個叉口落入左右兩個

 管道的可能性是相等的.

某商家按上述投球方式進行促銷活動,若投入的小球落

到A,B,C,則分別設為l,2,3等獎.

(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,

90%.記隨變量為獲得k(k=1,2,3)等獎的折扣

率,求隨機變量的分布列及期望

(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機

變量為獲得1等獎或2等獎的人次,求

 


 [番茄花園1]1.

查看答案和解析>>

同步練習冊答案