已知數(shù)列{an}為等差數(shù)列,首項a1=1,公差d≠0,若ak1,ak2,ak3,…,akn,…成等比數(shù)列,且k1=1,k2=2,k3=5,則數(shù)列{kn}的通項公式kn=
 
考點:等比數(shù)列的性質(zhì),等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列和等比數(shù)列的通項公式分別求出對應的公差和公比,即可得到結(jié)論.
解答: 解:∵數(shù)列{an}為等差數(shù)列,首項a1=1,公差d≠0,ak1,ak2ak3,…,akn成等比數(shù)列,且k1=1,k2=2,k3=5,
a
2
2
=a1a5
,
即(1+d)2=1•(1+4d),
解得d=2,
即an=2n-1,
akn=2kn-1,
又等比數(shù)列a1,a2,a5的公比為q=
a2
a1
=3
,
akn=2kn-1=3n-1,
即kn=
3n-1+1
2
,
故答案為:
3n-1+1
2
點評:本題主要考查數(shù)列通項公式的計算,利用等差數(shù)列和等比數(shù)列的定義和通項公式求出公比和公差是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值.
(3)若曲線y=f(x)與直線y=b 有兩個不同的交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求由約束條件
x+y≤5
2x+y≤6
x≥0,y≥0
確定的平面區(qū)域的面積S和目標函數(shù)z=4x+3y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列說法:
①Sn是數(shù)列{an}的前n項和,若Sn=n2+n+1,則數(shù)列{an}是等差數(shù)列;
②若實數(shù)x,y滿足x2+y2=4,則
xy
x+y-2
的最小值是1-
2

③在△ABC中,a,b,c分別是角A、B、C的對邊,若acosA=bcosB,則△ABC 為等腰直角三角形;
④△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中正確的有
 
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的不等式mx2-2(m+1)x+m+3>0的解集為R,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1、F2,實軸長為1,P是雙曲線右支上的一點,滿足|PF1|=3,M是y軸上的一點,則
PM
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)同時滿足:①對于定義域上的任意x,恒有f(x)+f(-x)=0;②對于定義域上的任意x1,x2,當x1≠x2時,恒有
f(x1)-(x2)
x1-x2
<0
,則稱函數(shù)f(x)為“理想函數(shù)”.
給出下列四個函數(shù)中:
(1)f(x)=x+1;
(2)f(x)=x2;
(3)f(x)=-x;
(4)f(x)=
-x2,x≥0
x2,x<0
,
能被稱為“理想函數(shù)”的有
 
(填相應的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(x,y)滿足
x≥1
x-y+1≥0
2x-y-2≤0
,則
2x+y
2x+6
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y-1≤0
3x-y+1≥0
x-y-1≤0
,若z=mx+y僅在點(1,0)處取得最大值,則實數(shù)m的取值范圍是( 。
A、(1,+∞)
B、(-1,+∞)
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

同步練習冊答案