【題目】如圖,橢圓C: 經(jīng)過點(diǎn)P(1, ),離心率e= ,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 . 問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由.
【答案】
(1)解:橢圓C: 經(jīng)過點(diǎn)P (1, ),可得 ①
由離心率e= 得 = ,即a=2c,則b2=3c2②,代入①解得c=1,a=2,b=
故橢圓的方程為
(2)解:方法一:由題意可設(shè)AB的斜率為k,則直線AB的方程為y=k(x﹣1)③
代入橢圓方程 并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0
設(shè)A(x1,y1),B(x2,y2),
x1+x2= , ④
在方程③中,令x=4得,M的坐標(biāo)為(4,3k),
從而 , , =k﹣
注意到A,F(xiàn),B共線,則有k=kAF=kBF,即有 = =k
所以k1+k2= + = + ﹣ ( + )
=2k﹣ × ⑤
④代入⑤得k1+k2=2k﹣ × =2k﹣1
又k3=k﹣ ,所以k1+k2=2k3
故存在常數(shù)λ=2符合題意
方法二:設(shè)B(x0,y0)(x0≠1),則直線FB的方程為
令x=4,求得M(4, )
從而直線PM的斜率為k3= ,
聯(lián)立 ,得A( , ),
則直線PA的斜率k1= ,直線PB的斜率為k2=
所以k1+k2= + =2× =2k3,
故存在常數(shù)λ=2符合題意
【解析】(1)由題意將點(diǎn)P (1, )代入橢圓的方程,得到 ,再由離心率為e= ,將a,b用c表示出來代入方程,解得c,從而解得a,b,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)方法一:可先設(shè)出直線AB的方程為y=k(x﹣1),代入橢圓的方程并整理成關(guān)于x的一元二次方程,設(shè)A(x1 , y1),B(x2 , y2),利用根與系數(shù)的關(guān)系求得x1+x2= , ,再求點(diǎn)M的坐標(biāo),分別表示出k1 , k2 , k3 . 比較k1+k2=λk3即可求得參數(shù)的值;方法二:設(shè)B(x0 , y0)(x0≠1),以之表示出直線FB的方程為 ,由此方程求得M的坐標(biāo),再與橢圓方程聯(lián)立,求得A的坐標(biāo),由此表示出k1 , k2 , k3 . 比較k1+k2=λk3即可求得參數(shù)的值
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季取暖時減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)請解釋的實(shí)際意義,并求的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時,業(yè)主所付的總費(fèi)用最少?并求此時與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.
(1)證明:平面平面;
(2)若為的中點(diǎn),且,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).
(1)若圓C1與圓C2相交于A,B兩點(diǎn),且|AB|=,求點(diǎn)C1到直線AB的距離;
(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求過點(diǎn)處的切線方程
(2)若函數(shù)有兩個不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直二面角中,四邊形是邊長為2的正方形,,為上的點(diǎn),且平面.
(1)求證:;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費(fèi)用為16.9萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬元.
(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用、保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過點(diǎn)且與圓相切的直線方程;
(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙的半徑為,圓心的坐標(biāo)為,其中.,為該圓的兩條切線,為坐標(biāo)原點(diǎn),,為切點(diǎn),在第一象限,在第四象限.
()若時,求切線,的斜率.
()若時,求外接圓的標(biāo)準(zhǔn)方程.
()當(dāng)點(diǎn)在軸上運(yùn)動時,將表示成的函數(shù),并求函數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com