9.拋物線y2=2x的焦點(diǎn)為F,點(diǎn)P在拋物線上,點(diǎn)O為坐標(biāo)系原點(diǎn),若|PF|=3,則|PO|等于( 。
A.$\frac{3\sqrt{5}}{2}$B.3$\sqrt{3}$C.$\frac{5\sqrt{5}}{2}$D.4$\sqrt{2}$

分析 求出拋物線的焦點(diǎn)和準(zhǔn)線方程,設(shè)出P的坐標(biāo),運(yùn)用拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),求出P的坐標(biāo),即可得到所求值.

解答 解:拋物線y2=2x的焦點(diǎn)F($\frac{1}{2}$,0),準(zhǔn)線l為x=-$\frac{1}{2}$,
設(shè)拋物線的點(diǎn)P(m,n),
則由拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),
即有m+$\frac{1}{2}$=3,
解得,m=$\frac{5}{2}$,
∴P$\frac{5}{2}$,$±\sqrt{5}$),
∴|PO|=$\frac{3\sqrt{5}}{2}$
故選A.

點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=2a2+3,S3=2a3+3,則公比q的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點(diǎn)A(0,2)且與圓(x+3)2+(y+3)2=18切于原點(diǎn)的圓的方程是(x-1)2+(y-1)2 =2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$=(-1,2)與$\overrightarrow$=(3k-1,1)互相垂直,則k的值為( 。
A.$\frac{1}{6}$B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間(-1,2)中任取一個(gè)數(shù)x,則使2x>3的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),且過點(diǎn)F的直線y=2x-4與此雙曲線只有一個(gè)交點(diǎn),則雙曲線的方程為$\frac{5{x}^{2}}{4}$-$\frac{5{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1.
(1)當(dāng)a=2時(shí),求f(x)在(1,f(1))處的切線方程;
(2)若a>0,且對(duì)x∈(0,+∞)時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.lg2+2lg5=( 。
A.1+lg5B.2+lg5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.方程3x+4x=6x解的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案