一名學(xué)生每天騎自行車上學(xué),從家到學(xué)校的途中有5個交通崗,假設(shè)他在各交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是.
(1)求這名學(xué)生在途中遇到紅燈的次數(shù)ξ的分布列;
(2)求這名學(xué)生在首次遇到紅燈或到達(dá)目的地停車前經(jīng)過的路口數(shù)η的分布列;
(3)這名學(xué)生在途中至少遇到一次紅燈的概率.
(1)的分布列為:
科目:高中數(shù)學(xué)
來源:
題型:解答題
.已知盒子中有4個紅球,2個白球,從中一次抓三個球
科目:高中數(shù)學(xué)
來源:
題型:解答題
袋子A、B中均裝有若干個大小相同的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
科目:高中數(shù)學(xué)
來源:
題型:解答題
將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,將得到的點(diǎn)數(shù)分別記為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取200名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有48人.
科目:高中數(shù)學(xué)
來源:
題型:解答題
(1)從1,2,3,4,5五個數(shù)中依次取2個數(shù),求這兩個數(shù)的差的絕對值等于1的概率;
科目:高中數(shù)學(xué)
來源:
題型:解答題
甲、乙兩隊(duì)在進(jìn)行一場五局三勝制的排球比賽中,規(guī)定先贏三局的隊(duì)獲勝,并且比賽就此結(jié)束,現(xiàn)已知甲、乙兩隊(duì)每比賽一局,甲隊(duì)獲勝的概率為,乙隊(duì)獲勝的概率為,且每局比賽的勝負(fù)是相互獨(dú)立的,問:
科目:高中數(shù)學(xué)
來源:
題型:解答題
口袋中有大小、質(zhì)地均相同的7個球,3個紅球,4個黑球,現(xiàn)在從中任取3個球。
科目:高中數(shù)學(xué)
來源:
題型:解答題
張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
(2)的分布列為:0 1 2 3 4 5 0 1 2 3 4 5 解析試題分析:(1)由于~,則,
所以的分布列為:
(2)也就是說{前個是綠燈,第個是紅燈},也就是說(5個均為綠燈),則,0 1 2 3 4 5
;所以的分布列為:0 1 2 3 4 5
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數(shù)為X ,求X的分布列和數(shù)學(xué)期望.
(1) 從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止。
①求恰好摸5次停止的概率;
②記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望。
(2)若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值。
(1)求直線與圓相切的概率;
(2)將的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
(Ⅰ)在抽取的學(xué)生中,身高不超過165cm的男、女生各有多少人?并估計(jì)男生的平均身高。
(Ⅱ)在上述200名學(xué)生中,從身高在170~175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當(dāng)旗手,求4人中至少有一名女生的概率.
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC邊上任取一點(diǎn)M,求 的概率.
(1)甲隊(duì)以獲勝的概率是多少?
(2)乙隊(duì)獲勝的概率是多少?
(1)求取出的球顏色相同的概率;
(2)若取出的紅球數(shù)設(shè)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。
分成5個路段,每個路段的駕車時(shí)間都是3分鐘,如果遇到紅燈要停留1分鐘,假設(shè)他在各
交通崗是否遇到紅燈是相互獨(dú)立的,并且概率都是
(1)求張師傅此行時(shí)間不少于16分鐘的概率
(2)記張師傅此行所需時(shí)間為Y分鐘,求Y的分布列和均值
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號