已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.動(dòng)圓M與兩圓都相切,求動(dòng)圓圓心M的軌跡方程.

答案:
解析:

  解:設(shè)動(dòng)圓M的半徑為r,若M與C1、C2都內(nèi)切或M與C1、C2都外切,則必有|MC1|=|MC2|,故M的軌跡方程為x=0.若M與C1、C2中一圓內(nèi)切,與另一圓外切,則有|MC2|-|MC1|=<8=|C1C2|.

  故M的軌跡是以C1、C2為焦點(diǎn)的雙曲線,其方程為=1.

  故所求動(dòng)圓圓心M的軌跡方程為=1或x=0.


提示:

如果遇到動(dòng)點(diǎn)到兩定點(diǎn)的距離之差問(wèn)題,應(yīng)聯(lián)想能否運(yùn)用雙曲線定義解題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求與橢圓
x2
25
+
y2
16
=1
共焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
(2)已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動(dòng)圓M與兩圓一個(gè)內(nèi)切,一個(gè)外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩圓C1:x 2+y2+4x-4y+4=0和圓C2x2+y2+2x=0
(1)求證:兩圓相交.
(2)求過(guò)點(diǎn)(-2,3),且過(guò)兩圓交點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第17期 總第173期 人教課標(biāo)版(A選修1-1) 題型:044

已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,一動(dòng)圓和圓C1相內(nèi)切,和圓C2相外切,求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)求與橢圓
x2
25
+
y2
16
=1
共焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
(2)已知兩圓C1:(x+4)2+y2=2C2:(x-4)2+y2=2,動(dòng)圓M與兩圓一個(gè)內(nèi)切,一個(gè)外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案