【題目】如圖,在多面體中,底面是邊長為2的菱形,,四邊形是矩形,分別是的中點.

(1)求證:平面平面;

(2)若平面平面,,求平面與平面所成角的余弦值.

【答案】(1)見解析.

(2) .

【解析】分析:(1)連接于點由三角形中位線定理可得,由線面平行的判定定理可得平面,同理平面,從而可得結(jié)論;(2)過點在平面中作,軸,建立空間直角坐標系,分別利用向量垂直數(shù)量積為零列方程組,求出. 平面與平面法向量由空間向量夾角余弦公式可得結(jié)果.

詳解(1)連接于點,顯然,平面平面,可得平面,同理平面,平面,可得:平面平面.

(2)過點在平面中作,顯然軸、、兩兩垂直,如圖所示建立空間直角坐標系.,,,,,,.設(shè)平面與平面法向量分別為,.

,設(shè),設(shè).

,綜上:面與平面所成角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱的側(cè)面是菱形,平面平面,直線與平面所成角為,,的中點.

(1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2,

E、F分別為CD、PB的中點.

1)求證:EF⊥平面PAB

2)設(shè),求直線AC與平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點任作一直線交拋物線兩點,過兩點分別作拋物線的切線

(Ⅰ)記的交點的軌跡為,求的方程;

(Ⅱ)設(shè)與直線交于點(異于點),且.問是否為定值?若為定值,請求出定值.若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上奇函數(shù),對任意實數(shù)都有,當時,,則 ( )

A. -1B. 1C. 0D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為建立健全國家學生體質(zhì)健康監(jiān)測評價機制,激勵學生積極參加身體鍛煉,教育部印發(fā)《國家學生體質(zhì)健康標準(2014年修訂)》,要求各學校每學期開展覆蓋本校各年級學生的《標準》測試工作,并根據(jù)學生每個學期總分評定等級.某校決定針對高中學生,每學期進行一次體質(zhì)健康測試,以下是小明同學六個學期體質(zhì)健康測試的總分情況.

學期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));

(2)在第六個學期測試中學校根據(jù) 《標準》,劃定540分以上為優(yōu)秀等級,已知小明所在的學習小組10個同學有6個被評定為優(yōu)秀,測試后同學們都知道了自己的總分但不知道別人的總分,小明隨機的給小組內(nèi)4個同學打電話詢問對方成績,優(yōu)秀的同學有人,求的分布列和期望.

參考公式: ,;

相關(guān)系數(shù);

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面與平面、平面都相交,則這三個平面可能的交線有________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義域為R上的奇函數(shù),當x0時,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案