【題目】為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.

1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:

2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;

3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)

【答案】12)詳見解析(3)初中生平均參加公益勞動時間較長

【解析】

1)由圖表直接利用隨機事件的概率公式求解;

2X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;

3)由圖表直接判斷結(jié)果.

1100名學生中共有男生48名,

其中共有20人參加公益勞動時間在,

設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,

那么;

2的所有可能取值為0,1,2,3.

;

.

∴隨機變量的分布列為:

3)由圖表可知,初中生平均參加公益勞動時間較長.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左焦點為上一點,且軸垂直,,分別為橢圓的右頂點和上頂點,且,且的面積是,其中是坐標原點.

1)求橢圓的方程.

2)若過點的直線,互相垂直,且分別與橢圓交于點,,,四點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1,F2,過點F1的直線與C交于A,B兩點.ABF2的周長為,且橢圓的離心率為.

1)求橢圓C的標準方程:

2)設點P為橢圓C的下頂點,直線PA,PBy2分別交于點M,N,當|MN|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,等腰梯形ABCD中,,,OBE中點,FBC中點.將沿BE折起到的位置,如圖2.

1)證明:平面;

2)若平面平面BCDE,求點F到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5/件;方案2的運作費用為2元件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應的等高條形圖如圖所示.

1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);

2)已知該公司產(chǎn)品的成本為10/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價(單位:元/件,整數(shù))和銷量(單位:件)如下表所示:

售價

33

35

37

39

41

43

45

47

銷量

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;

②根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達到最大.

52446.95

13142

122.89

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標方程;

(Ⅱ)若直線與曲線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】棉花的優(yōu)質(zhì)率是以其纖維長度來街量的,纖維越長的棉花晶質(zhì)越高.棉花的品質(zhì)分類標準為:纖維長度小于等于的為粗絨棉,纖維長度在的為細絨棉,纖維長度大于的為長絨棉,其中纖維長度在以上的棉花又名軍海1”.某采購商從新疆某一棉花基地抽測了根棉花的纖維長度,得到數(shù)據(jù)如下圖頻率分布表所示:

纖維長度

根數(shù)

1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認為該基地的這批棉花符合長絨棉占全部棉花的以上的要求?

2)用樣本估計總體, 若這批榨花共有,基地提出了兩種銷售方案給采購商參考.方案一:不分等級賣出,每千克按元計算,方案二:棉花先分等級再銷售,分級后不同等級的棉花售價如下表:

纖維長度

售價

從來購商的角度,請你幫他決策一下該用哪個方案.

3)用分層抽樣的方法從長絨棉中抽取6根棉花,再從此根棉花中抽取兩根進行檢驗.求抽到的兩根棉花只有一根是軍海1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當點的橫坐標為時,為正三角形.

)求的方程;

)若直線,且有且只有一個公共點,

)證明直線過定點,并求出定點坐標;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案