已知定點(diǎn)A(-1,0)和B(1,0),P是圓(x-3)2+(y-4)2=4上的一動(dòng)點(diǎn),求的最大值和最小值.
【答案】分析:先根據(jù)A,B的坐標(biāo)分別表示出,進(jìn)而可求得的值,進(jìn)而根據(jù)中點(diǎn)公式求得,進(jìn)而求得的表達(dá)式,同時(shí)根據(jù)點(diǎn)P在圓上求得,進(jìn)而根據(jù)||-||≤||=||≤||+||求得的范圍,進(jìn)而求得的最大值和最小值
解答:解:設(shè)已知圓的圓心為C,由已知可得
,,又由中點(diǎn)公式得,
所以===,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185601598697340/SYS201310241856015986973020_DA/24.png">點(diǎn)P在圓(x-3)2+(y-4)2=4上,
所以|,||=2,且,
所以||-||≤||=||≤||+||,
即3≤||≤7,故,
所以|PA|2+|PB|2的最大值為100,最小值為20.
點(diǎn)評(píng):本題主要考查了圓的方程的綜合運(yùn)用和向量的基本計(jì)算.考查了學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知定點(diǎn)A(1,0),定圓C:(x+1)2+y2=8,M為圓C上的一個(gè)動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
NP
AM
=0
,則點(diǎn)N的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x+b
,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時(shí),不等式f(x)≤
2m
(x+1)|x-m|
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0)和定直線x=-1上的兩個(gè)動(dòng)點(diǎn)E、F,滿足
AE
AF
,動(dòng)點(diǎn)P滿足
EP
OA
FO
OP
(其中O為坐標(biāo)原點(diǎn)).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)B(0,2)的直線l與(1)中軌跡C相交于兩個(gè)不同的點(diǎn)M、N,若
AM
AN
<0
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0),定直線l:x=5,動(dòng)點(diǎn)M(x,y)
(Ⅰ)若M到點(diǎn)A的距離與M到直線l的距離之比為
5
5
,試求M的軌跡曲線C1的方程.
(Ⅱ)若曲線C2是以C1的焦點(diǎn)為頂點(diǎn),且以C1的頂點(diǎn)為焦點(diǎn),試求曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0)和定圓B:x2+y2+2x-15=0,動(dòng)圓P和定圓B相切并過A點(diǎn),
(1)求動(dòng)圓P的圓心P的軌跡C的方程.
(2)設(shè)Q是軌跡C上任意一點(diǎn),求∠AQB的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案