設(shè)函數(shù)f(x)=x-
1
x
-alnx(a∈R).討論函數(shù)f(x)的單調(diào)性.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)并令導(dǎo)數(shù)等于零,解方程,跟據(jù)f′(x),f(x)隨x的變化情況即可求出函數(shù)的單調(diào)區(qū)間.
解答: 解:f(x)=x-
1
x
-alnx,定義域?yàn)椋?,+∞),
∴f′(x)=1+
1
x2
-
a
x
=
x2-ax+1
x2
,
令g(x)=x2-ax+1,△=a2-4,
①當(dāng)-2≤a≤2時(shí),△≤0,f′(x)≥0,故f(x)在(0,+∞)上單調(diào)遞增,
②當(dāng)a<-2時(shí),△>0,g(x)=0的兩根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上單調(diào)遞增,
③當(dāng)a>2時(shí),△>0,g(x)=0的兩根為x1=
a-
a2-4
2
,x2=
a+
a2-4
2
,
當(dāng)0<x<x1時(shí),f′(x)>0;
當(dāng)x1<x<x2時(shí),f′(x)<0;
當(dāng)x>x2時(shí),f′(x)>0;
故f(x)分別在(0,
a-
a2-4
2
),(
a+
a2-4
2
,+∞)上單調(diào)遞增,
在(
a-
a2-4
2
a+
a2-4
2
)上單調(diào)遞減.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問(wèn)題,對(duì)方程f'(x)=0有無(wú)實(shí)根,有實(shí)根時(shí),根是否在定義域內(nèi)和根大小進(jìn)行討論,體現(xiàn)了分類(lèi)討論的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(cosx-1)=cos2x,求f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,an+1=an2+2an(n∈N+).
(1)證明:數(shù)列{log2(an+1)}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
1
an
+
1
an+2
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax3+bx2+cx,設(shè)兩個(gè)極值點(diǎn)是x=-1和x=1,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)y=f(x)有下列四個(gè)敘述:
①對(duì)于函數(shù)定義域內(nèi)的任意x,都有f(x+2π)=f(x)成立;
②函數(shù)y=f(x)沒(méi)有最大值;
③函數(shù)y=f(x)在區(qū)間(0,
π
2
)上是單調(diào)遞增的;
④函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
(1)指出函數(shù)y=xsinx符合上述哪幾個(gè)敘述;
(2)問(wèn)是否存在符合上述四個(gè)敘述的函數(shù),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)方程ρsin2θ-2•cosθ=0表示的曲線是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin
a
2
=
4
5
,且sina<0,則a的終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若y=0.5|1-x|+m 的圖象與x軸有交點(diǎn),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>-1,y>0且滿足x+2y=1,則
1
x+1
+
2
y
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案