已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
,直線(xiàn)y=kx(k≠0)與橢圓M交于A、B兩點(diǎn),直線(xiàn)y=-
1
k
x
與橢圓M交于C、D兩點(diǎn),P點(diǎn)坐標(biāo)為(a,0),直線(xiàn)PA和PB斜率乘積為-
1
2

(1)求橢圓M離心率;
(2)若弦AC的最小值為
2
6
3
,求橢圓M的方程.
分析:(1)設(shè)A(x1,y1),由對(duì)稱(chēng)性得B(-x1,-y1).將A(x1,y1)代入橢圓可得
y
2
1
=b2(1-
x
2
1
a2
)
.利用斜率計(jì)算公式可得kPA•kPB=
y1
x1-a
-y1
-x1-a
,再利用已知kPAkPB=-
1
2
,a2=b2+c2e=
c
a
即可得出;
(2)由(1)e=
2
2
可得a2=2b2,于是橢圓方程可化為x2+2y2=a2,與直線(xiàn)AC的方程聯(lián)立可得A,C的坐標(biāo),進(jìn)而得到|AC|2,再利用基本不等式即可得出.
解答:解:(1)設(shè)A(x1,y1),由對(duì)稱(chēng)性得B(-x1,-y1).
將A(x1,y1)代入橢圓得
x
2
1
a2
+
y
2
1
b2
=1
,∴
y
2
1
=b2(1-
x
2
1
a2
)

KPAKPB=
y1
x1-a
-y1
-x1-a
=
y
2
1
x
2
1
-a2
=
b2(1-
x
2
1
a2
)
x
2
1
-a2
=-
b2
a2

KPAKPB=-
1
2

b2
a2
=
1
2
,∴
c2
a2
=
1
2
,
e=
2
2

(2)橢圓方程可化為x2+2y2=a2,聯(lián)立
y=kx
x2+2y2=a2

解得x2=
a2
1+2k2
,y2=
k2a2
1+2k2
,
設(shè)O為坐標(biāo)原點(diǎn),則|OA|2=
a2(1+k2)
1+2k2
,
同理可得|OC|2=
a2(1+
1
k2
)
1+
2
k2

∴|AC|2=
a2(1+k2)
1+2k2
+
a2(1+
1
k2
)
1+
2
k2
=a2×
3k4+6k2+3
2k4+5k2+2
=
3
2
a2(1-
1
2k2+
2
k2
+5
)
4
3
a2

當(dāng)且僅當(dāng)k2=1即k=±1時(shí)取等號(hào),此時(shí)
4
3
a2=(
2
6
3
)2=
8
3
,
∴a2=2.
∴橢圓方程為  
x2
2
+y2=1
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線(xiàn)與橢圓相交轉(zhuǎn)化為方程聯(lián)立,兩點(diǎn)間的距離公式、基本不等式等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西城區(qū)二模)已知橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
3
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為6+4
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓M交于A,B兩點(diǎn),且以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
,其短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2,且點(diǎn)A(
2
,1)在橢圓M上.直線(xiàn)l的斜率為
2
2
,且與橢圓M交于B、C兩點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘三模)已知橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
3
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為6+4
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線(xiàn)l:x=ky+m與橢圓M交手A,B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)橢圓的右頂點(diǎn)C,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)如圖,已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
,離心率e=
6
3
,橢圓與x正半軸交于點(diǎn)A,直線(xiàn)l過(guò)橢圓中心O,且與橢圓交于B、C兩點(diǎn),B(1,1).
(Ⅰ) 求橢圓M的方程;
(Ⅱ)如果橢圓上有兩點(diǎn)P、Q,使∠PBQ的角平分線(xiàn)垂直于AO,問(wèn)是否存在實(shí)數(shù)λ(λ≠0)使得
PQ
AC
成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷