以正方形ABCD的相對頂點AC為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為

[  ]

A.

B.

C.

D.

答案:D
解析:

建立坐標系,設出橢圓方程,由條件求出橢圓方程,可得e


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為(  )
A、
10
-
2
3
B、
5
-1
3
C、
5
-1
2
D、
10
-
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為
10
-
2
2
10
-
2
2
;設F1和F2為雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點,若F1,F(xiàn)2,P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為
2
2
;經過拋物線y=
1
4
x2
的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若y1+y2=5,則線段AB的長等于
7
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為 …(    )

A.         B.           C.        D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年洛陽市統(tǒng)一考試文) 以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為                                                               (    )

A、        B、        C、    D、

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年重慶一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案