“三角形的三條中線交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的2倍”試類(lèi)比:四面體的四條中線(頂點(diǎn)到對(duì)面三角形重心的連線段)交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)面重心距離的________倍.

3
分析:本題考查的知識(shí)點(diǎn)是類(lèi)比推理,由平面圖形的性質(zhì)類(lèi)比猜想空間幾何體的性質(zhì),一般的思路是:點(diǎn)到線,線到面,或是二維變?nèi)S;由題目中三角形的三條中線交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的2倍的結(jié)論是二維線段長(zhǎng)與線段長(zhǎng)的關(guān)系,類(lèi)比后的結(jié)論應(yīng)該為三維的邊與邊的比例關(guān)系.
解答:解:由平面圖形的性質(zhì)類(lèi)比猜想空間幾何體的性質(zhì),
一般的思路是:點(diǎn)到線,線到面,或是二維變?nèi)S;
由題目中“三角形的三條中線交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的2倍”,
我們可以推斷:“四面體的四條中線(頂點(diǎn)到對(duì)面三角形重心的連線段)交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)面重心距離的3倍.”
如圖,△ABE中,M、N為AE、BE的三等分點(diǎn),
∴MN∥AB,AB=3MN,∴AG=3GM.(用正四面體驗(yàn)證也可)
故答案為:3.
點(diǎn)評(píng):本題主要考查類(lèi)比推理的知識(shí)點(diǎn),解答本題的關(guān)鍵是由平面圖形的性質(zhì)類(lèi)比猜想空間幾何體的性質(zhì).類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、“三角形的三條中線交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的2倍”試類(lèi)比:四面體的四條中線(頂點(diǎn)到對(duì)面三角形重心的連線段)交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)面重心距離的
3
倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用平面向量的方法證明:三角形的三條中線交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列推理過(guò)程屬于演繹推理的為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列語(yǔ)句中,不能成為命題的是( 。
A、5>12
B、x>0
C、若
a
b
,則
a
?
b
=0
D、三角形的三條中線交于一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省高三高考適應(yīng)性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

“三角形的三條中線交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的2倍”。試類(lèi)比:四面體的四條中線(頂點(diǎn)到對(duì)面三角形重心的連線段)交于一點(diǎn),且這一點(diǎn)到頂點(diǎn)的距離等于它到對(duì)面重心距離的      倍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案