已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(3).

解析試題分析:(1) 利用導(dǎo)數(shù)的幾何意義求切線的斜率,再求切點(diǎn)坐標(biāo),最后根據(jù)點(diǎn)斜式直線方程求切線方程;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,注意在解不等式時(shí)需要對(duì)參數(shù)的范圍進(jìn)行討論;(3)根據(jù)單調(diào)性求函數(shù)的極值,根據(jù)其圖像交點(diǎn)的個(gè)數(shù)確定兩個(gè)函數(shù)極值的大小關(guān)系,然后解對(duì)應(yīng)的不等式.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/d/dgg75.png" style="vertical-align:middle;" />,
所以,
所以曲線在點(diǎn)處的切線斜率為.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/6/1xeof3.png" style="vertical-align:middle;" />,
所以所求切線方程為,即.         2分
(2),
①若,當(dāng)時(shí),;當(dāng)時(shí),.
所以的單調(diào)遞減區(qū)間為,
單調(diào)遞增區(qū)間為.                    4分
②若,
所以的單調(diào)遞減區(qū)間為.                    5分
③若,當(dāng)時(shí),;當(dāng)時(shí),.
所以的單調(diào)遞減區(qū)間為;
單調(diào)遞增區(qū)間為.                 7分
(3)由(2)知函數(shù)上單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減,
所以處取得極小值,在處取得極大值.  8分
,得.
當(dāng)時(shí),;當(dāng)時(shí),.
所以上單調(diào)遞增,在單調(diào)遞減,在上單調(diào)遞增.
處取得極大值,在處取得極小值. 10分
因?yàn)楹瘮?shù)與函數(shù)的圖象有3個(gè)不同的交點(diǎn),
所以,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于函數(shù)若存在,使得成立,則稱的不動(dòng)點(diǎn).
已知
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且、兩點(diǎn)關(guān)于直線對(duì)稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤(rùn)最大?
(注:年利潤(rùn)=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有名工人,現(xiàn)接受了生產(chǎn)臺(tái)型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)型產(chǎn)品由個(gè)型裝置和個(gè)型裝置配套組成,每個(gè)工人每小時(shí)能加工個(gè)型裝置或個(gè)型裝置.現(xiàn)將工人分成兩組同時(shí)開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工型裝置的工人有人,他們加工完型裝置所需時(shí)間為,其余工人加工完型裝置所需時(shí)間為(單位:小時(shí),可不為整數(shù)).
(1)寫出、的解析式;
(2)寫出這名工人完成總?cè)蝿?wù)的時(shí)間的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時(shí)間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為4元/千克時(shí),每日可銷售出該商品5千克;銷售價(jià)格為4.5元/千克時(shí),每日可銷售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足對(duì)任意實(shí)數(shù)都有成立,且當(dāng)時(shí),,.
(1)求的值;
(2)判斷上的單調(diào)性,并證明;
(3)若對(duì)于任意給定的正實(shí)數(shù),總能找到一個(gè)正實(shí)數(shù),使得當(dāng)時(shí),,則稱函數(shù)處連續(xù)。試證明:處連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(Ⅰ)若的定義域和值域均是,求實(shí)數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù).
⑴求函數(shù)的解析式;
⑵設(shè)函數(shù),若的兩個(gè)實(shí)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中為常數(shù), ,函數(shù)的圖象與坐標(biāo)軸交點(diǎn)處的切線為,函數(shù)的圖象與直線交點(diǎn)處的切線為,且。
(Ⅰ)若對(duì)任意的,不等式成立,求實(shí)數(shù)的取值范圍.
(Ⅱ)對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

同步練習(xí)冊(cè)答案