設f(x)=
x
a(x+2)
,方程f (x)=x有唯一解,數(shù)列{xn}滿足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求數(shù)列{xn}的通項公式;
(2)已知數(shù)列{an}滿足a1=
1
2
,an+1=
1
4
(2+an2-
2an
an+2
(n∈N*),求證:對一切n≥2的正整數(shù)都滿足
3
4
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
<2.
分析:(1)由f(x)=x有唯一解可知對應的方程有唯一的解可求a,進而可求xn+1與xn的遞推關系,構造等差數(shù)列可求
(2)由a1=
1
2
,an+1=
1
4
(2+an2
2an
2+an
=
(2+an)an
2
整理可得
1
an+2
=
1
an
-
1
an+1
,把已知代入即可得
1
nxn
=
1
an
-
1
an+1
,然后利用裂項即可求和,進而可證
解答:解:(1)由f(x)=x得ax2+(2a-1)x=0(a≠0)
∴當且僅當a=
1
2
時,f(x)=x有唯一解x=0,
f(x)=
2x
x+2

當f(x1)=
2x1
2+x1
=1得x1=2,由xn+1=f (xn)=
2xn
xn+2
可得
1
xn+1
-
1
xn
=
1
2

∴數(shù)列{
1
xn
}是首項為
1
x1
=
1
2
,公差為
1
2
的等差數(shù)列
1
xn
=
1
2
+
1
2
(n-1)=
1
2
n

xn=
2
n

(2)∵a1=
1
2
,an+1=
1
4
(2+an2
2an
2+an
=
(2+an)an
2
 又a1=
1
2

1
an+1
=
2
an(2+an)
=
1
an
-
1
an+2
 且an>0,
1
an+2
=
1
an
-
1
an+1

1
nxn
=
1
an
-
1
an+1

當n≥2時,
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
1
2+
1
2
+
1
2+
5
8
=
82
105
3
4

1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an

=(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an
-
1
an+1

=
1
a1
-
1
an+1
=2-
1
an+1
<2
∴對一切n≥2的正整數(shù)都滿足
3
4
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
<2.
點評:本題主要考查了利用數(shù)列的遞推公式構造等差數(shù)列求解數(shù)列的通項公式及數(shù)列的裂項求和在不等式中的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=
x
a(x+2)
,且f(x)=x有唯一解,f(x1)=
1
1003
,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a;
(2)求數(shù)列{xn}的通項公式;
(3)若an=
4
xn
-4009,(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
x
a(x+2)
,且f(x)=x有唯一解,f(x1)=
1
1003
,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a;
(2)求數(shù)列{xn}的通項公式;
(3)若an=
4
xn
-4009,bn=
an+12+an2
2an+1an
(n∈N*),求證:b1+b2+…+bn<n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設f(x)=
x
a(x+2)
,方程f (x)=x有唯一解,數(shù)列{xn}滿足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求數(shù)列{xn}的通項公式;
(2)已知數(shù)列{an}滿足a1=
1
2
,an+1=
1
4
(2+an2-
2an
an+2
(n∈N*),求證:對一切n≥2的正整數(shù)都滿足
3
4
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
<2.

查看答案和解析>>

同步練習冊答案