已知橢圓C:數(shù)學公式(a>b>0)的左右焦點F1、F2與短軸一端點的連線互相垂直,M為橢圓上任一點,且△MF1F2的面積最大值為1.
(1)求橢圓C的方程;
(2)設圓A:x2+y2=r2(r>0)的切線l與橢圓C交于P、Q兩點,且數(shù)學公式數(shù)學公式=0,求半徑r的值.

解:(1)橢圓中,由題意可知,∴b=c=1,∴
∴橢圓方程為…(6分)
(2)l斜率不存在時,l方程為x=±r,此時、
∵OP⊥OQ,∴…(8分)
l斜率存在時,設l方程為y=kx+m則 即 m2=r2(1+k2
設P(x1,y1)、Q(x2,y2),聯(lián)立l與橢圓方程,消元可得(1+2k2)x2+4mkx+2m2-2=0…(10分)

∵OP⊥OQ,∴
∵m2=r2(1+k2),∴3r2(1+k2)-2(1+k2)=0

綜上所述…(14分)
分析:(1)根據(jù)焦點F1、F2與短軸一端點的連線互相垂直,△MF1F2的面積最大值為1,可建立方程組,即可求得橢圓方程;
(2)l斜率不存在時,l方程為x=±r,求出P、Q的坐標,利用OP⊥OQ,可求半徑r的值;l斜率存在時,設l方程為y=kx+m則可得m2=r2(1+k2),聯(lián)立l與橢圓方程,利用OP⊥OQ及韋達定理可求半徑r的值.
點評:本題考查橢圓的標準方程,考查圓的切線,考查直線與橢圓的位置關系,解題的關鍵是直線與橢圓方程聯(lián)立,利用韋達定理解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011學年福建省龍巖市高三(上)期末質(zhì)量檢查一級達標數(shù)學試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點F2,交橢圓于點A、B.
(。┤魸M足(O為坐標原點),求△AOB的面積;
(ⅱ)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在一點P,使得直線PA、PB的傾斜角互為補角?若存在,求出P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點

(I)求橢圓C的離心率:

(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆甘肅武威六中高二12月學段檢測文科數(shù)學試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個頂點為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點M、N.

 ①求橢圓C的方程.

 ②當⊿AMN的面積為時,求k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第七次月考理科數(shù)學 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省高三上學期第三次月考數(shù)學文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過右焦點F且斜率為kk>0)的直線與橢圓C相交于A、B兩點,若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習冊答案