【題目】已知函數(shù)

若函數(shù)處的切線平行于直線求實(shí)數(shù)a的值;

)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

)在()的條件下,若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

【答案】12時(shí), 無(wú)零點(diǎn); 時(shí), 恰有一個(gè)零點(diǎn); 時(shí), 有兩個(gè)零點(diǎn)3

【解析】試題分析:(1)利用導(dǎo)數(shù)的幾何意義,得, ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)等價(jià)于兩個(gè)函數(shù)的交點(diǎn)的個(gè)數(shù),即的交點(diǎn)個(gè)數(shù);(3)不等式能成立問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.

試題解析:

(Ⅰ),函數(shù)處的切線平行于直線

..

(Ⅱ)令

由此可知

上遞減,在上遞增,

時(shí)

時(shí), 無(wú)零點(diǎn)

時(shí), 恰有一個(gè)零點(diǎn)

時(shí), 有兩個(gè)零點(diǎn)

(Ⅲ)在上存在一點(diǎn),使得成立等價(jià)于函數(shù)上的最小值小于零.

,

①當(dāng)時(shí),即時(shí), 上單調(diào)遞減,所以的最小值為,由可得,

②當(dāng)時(shí),即時(shí), 上單調(diào)遞增,所以的最小值為,由可得;

③當(dāng)時(shí),即時(shí),可得的最小值為此時(shí), 不成立.

綜上所述:可得所求的范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的三內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a和b的值.
(2)說(shuō)明函數(shù)g(x)的單調(diào)性;若對(duì)任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
(3)設(shè) ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:sin230°+sin290°+sin2150°= ;
sin25°+sin265°+sin2125°=
sin212°+sin272°+sin2132°= ;
通過(guò)觀察上述兩等式的規(guī)律,請(qǐng)你寫(xiě)出一般性的命題,并給予的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,直線AO交⊙O于D,E兩點(diǎn),BC⊥DE,垂足為C.

(1)證明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn).
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最大值,則函數(shù)y=f(x+ )是(
A.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案