【題目】(導(dǎo)學(xué)號(hào):05856284)

在△ABC中,角AB,C的對(duì)邊分別為a,b,c,已知cb(1+2cosA).

(Ⅰ)求證:A=2B;

(Ⅱ)若aB,求△ABC的面積.

【答案】(1)見解析(2)

【解析】試題分析:(1)根據(jù)三角函數(shù)關(guān)系進(jìn)行轉(zhuǎn)化,結(jié)合兩角和差的正弦公式進(jìn)行化簡(jiǎn)即可;

(2)根據(jù)余弦定理求出b,結(jié)合三角形的面積公式即可求ABC的面積.

試題解析:

(Ⅰ)由正弦定理cb(1+2cosA)可知,sinC=sinB·(1+2cosA),

又在△ABC中,ABC=π,

所以sinC=sin(BA)=sinAcosB+sinBcosA,

從而sinAcosB-cosAsinB=sinB,

所以sin(AB)=sinB, 所以ABB,∴A=2B.

(Ⅱ)∵B,∴A,C=π-

由正弦定理得c=1+,

cb(1+2cosA),∴b=1,

SABCbcsinA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|2xa||2x1|(aR).

(1)當(dāng)a=-1時(shí),求f(x)2的解集;

(2)f(x)|2x1|的解集包含集合,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線yx+ln x在點(diǎn)(1,1)處的切線與曲線yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(2xb)exF(x)bxln x,bR.

(1)b<0,且存在區(qū)間M,使f(x)F(x)在區(qū)間M上具有相同的單調(diào)性,求實(shí)數(shù)b的取值范圍;

(2)F(x1)>b對(duì)任意x(0,+)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856289)[選修4-4:坐標(biāo)系與參數(shù)方程]

直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為: (t為參數(shù)) .

(Ⅰ)寫出圓C和直線l的普通方程;

(Ⅱ)點(diǎn)P為圓C上動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gsinxcosxsin2x,將其圖象向左移個(gè)單位,并向上移個(gè)單位,得到函數(shù)facos2b的圖象.

(Ⅰ)求實(shí)數(shù)ab, 的值;

(Ⅱ)設(shè)函數(shù)φgf,x,求函數(shù)φ的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為,短軸長(zhǎng)為,已知是拋物線的焦點(diǎn).

(1)求橢圓的方程和拋物線的方程;

(2)若拋物線的準(zhǔn)線上兩點(diǎn)關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案